>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Pióra i ołówki na teorii grawitacji połamało już wielu badaczy. To co wiemy, to prosty wzór, którego dzieci uczą się w szkole. Że siła grawitacji zależy od masy obiektów, które są jej źródłami (im obiekt cięższy, tym większa siła), oraz że słabnie wraz z zwiększającą się odległością pomiędzy tymi obiektami. Dzięki tej prostej zależności, udaje się doskonale przewidywać ruchy planet, satelitów, także zachowanie sporej części gwiazd w galaktyce. Sporej, ale nie wszystkich.

Tymi, których wytłumaczyć się nie da są np. kolizje gwiazd neutronowych, pulsary, czarne dziury czy wybuchy supernowych. Grawitacji nie sposób także „dopasować” do wielkiego wybuchu. A skoro od niego swój początek wziął czas i przestrzeń, nasze braki w rozumieniu grawitacji stają się kłopotliwe.

Dokładnie 100 lat temu Albert Einstein ogłosił (a konkretnie odczytał) Ogólną Teorię Względności. Jej manuskrypt (ma 46 stron) można dzisiaj zobaczyć w Bibliotece Narodowej Izraela. Dla postronnego obserwatora, niespecjalisty , notatki Einsteina mogą sprawiać wrażenie niewyraźnych bazgrołów zrobionych na pożółkłych kartkach. Są napisane bardzo drobnym maczkiem, często poprawiane, miejscami podkreślone, w innych miejscach przekreślone. Sporo w nich matematycznych wzorów. Niesamowite, jak wiele w fizyce czy w ogóle w postrzeganiu świata (wszechświata) zmieniło to, co 100 lat temu zostało zaprezentowane światu.

Ogólna Teoria Względności została ogłoszona w 1915 roku, gdy Albert Einstein przebywał w Niemczech. Już wtedy Einstein był znanym człowiekiem, a jego prace – choć przez bardzo nielicznych rozumiane – były w pewnym sensie kultowe. Stworzenie OTW nie było olśnieniem, jak wielu innych teorii fizycznych. Einstein pracował nad nią 9 lat. Czasami błądził, czasami się mylił. To była żmudna praca. OTW jest – jak sama nazwa wskazuje – uogólnieniem Szczególnej Teorii Względności Einsteina. Choć teoria Ogólna i Szczególna są dwoma najbardziej znanymi jego pracami, Einstein największe naukowe zaszczyty (Nagrodę Nobla) odebrał za prace nad zupełnie innym problem (konkretnie nad efektem fotoelektrycznym).

Ogólna Teoria Względności (OTW) jest w zasadzie teorią opisującą najbardziej namacalne dla nas oddziaływanie – grawitację. Z nią wiążą się takie wielkości jak masa, przestrzeń i czas. OTW jest bardzo skomplikowana. Nie sposób jej zrozumieć bez ogromnej wiedzy czysto matematycznej. Wynika z niej, że każda masa jest źródłem zakrzywienia otaczającej ją przestrzeni. Czym większa masa, tym większa siła grawitacji, czyli większe zakrzywienie przestrzeni. Jak to rozumieć? Gdy dwie osoby trzymają za rogi obrus jego powierzchnia jest płaska. Ale gdy na sam środek obrusu wrzucimy piłkę, obrus w miejscu w którym się ona znajduje lekko się „naciągnie” czy inaczej „zakrzywi”. Czym większa piłka, tym większe zakrzywienie. Gdy położymy na skraju obrusu mniejsza piłeczka, stoczy się do tego zakrzywienia, tak jak przyciągana grawitacyjnie asteroida „stoczy” się w kierunku Słońca. Tyle tylko, że obrus ma dwa wymiary, a przestrzeń wokół nas ma ich trzy. Ta nieintuicyjność (nie mylić z nielogicznością) to jeden z powodów dla których dwie teorie względności tak trudno zrozumieć. Drugim jest bardzo zaawansowana matematyka, której Einstein musiał użyć do rozwiązania swoich równań.

Gdy Einstein referował swoje pomysły na względność, był znany z zupełnie innych badań teoretycznych. Słuchano go więc z zaciekawianiem. Ale to zaciekawienie wynikało z szacunku do znanego fizyka a nie ze zrozumienia tego o czym mówił. W pewnym sensie tak jest do dzisiaj. Albert Einstein jest postacią kultową. Ale nie dlatego, że tak wielu ludzi rozumie Szczególną czy Ogólną Teorię Względności.  Tak naprawdę zaledwie garstka fizyków wie o co w niej chodzi. Nieco większa grupa rozumie co wynika z teorii Einsteina. Całkiem sporo fizyków na codzień wykorzystuje w swojej pracy naukowej zjawiska, które udało się dzięki teoriom Einsteina zrozumieć. Jednym z takich zjawisk są soczewki grawitacyjne. W zakrzywionej przestrzeni światło nie porusza się po liniach prostych, tylko krzywych. To dlatego światło dalekich galaktyk biegnące w okolicach dużych mas (czarnych dziur czy innych galaktyk) jest zakrzywione, tak samo jak światło przechodzące przez szklane soczewki. Dla astrofizyków i astronomów soczewki grawitacyjne to coś w rodzaju naturalnego teleskopu dzięki któremu mogą obserwować obiekty i zjawiska których inaczej nie udałoby się zaobserwować. Zakrzywiane światło to jednak dopiero początek wchodzenia w świat abstrakcji. Z równań Einsteina wynika także, że czas jest pojęciem względnym, że nie płynie dla nas wszystkich tak samo. Jego bieg jest zależny bowiem od siły grawitacji i od prędkości z jakim porusza się ciało. To z kolei wykorzystuje się w systemach globalnej lokalizacji (np. GPS).

Einstein był teoretykiem. Nie sprawdzał eksperymentalnie tego co wyliczył na drodze matematyki. Zresztą wtedy kiedy dokonywał swoich odkryć, nie było możliwości sprawdzenia ich poprawności. Urządzenia pomiarowe nie były dość czułe, a człowiek jeszcze nie latał w kosmos. To właśnie w przestrzeni pozaziemskiej wielokrotnie testowano wyliczenia Alberta Einsteina. Wszystkie dokładnie się zgadzają. No może za wyjątkiem jednej. Przewidywanych w Teorii Względności fal grawitacyjnych. Ale o nich napiszę innym razem 🙂 Tak samo jak o największej naukowej pomyłce Einsteina.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.