Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: ekstremofile

W kosmosie woda jest wszędzie!

Jest na planetach, księżycach, kometach a nawet… w mgławicach. Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Wody w kosmosie jest bardzo dużo. Ale to wcale nie musi znaczyć, że wszędzie tam jest życie.

Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Choć w kolejnym odcinku „Megaodkryć” na National Geographic Channel będzie mowa o „Wodnej apokalipsie” to okazuje się, że ta wspomniana apokalipsa to nasz ziemski problem.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Woda płynna jest na przynajmniej kilku obiektach Układu Słonecznego. Kilka tygodni temu odkryto ją także na powierzchni Marsa. Co zaskakuje, obłoki pary wodnej „wiszą” także w przestrzeni kosmicznej. Kilka lat temu odkryto taki wokół kwazaru PG 0052+251. Póki co, to największy ze wszystkich znanych rezerwuarów wody w kosmosie. Dokładne obliczenia wskazują, że gdyby całą tę parę wodną skroplić, byłoby jej 140 bilionów (tysięcy miliardów) razy więcej niż wody we wszystkich ziemskich oceanach. Masa odkrytego wśród gwiazd „zbiornika wody” wynosi 100 tysięcy razy więcej niż masa Słońca. To kolejny dowód, że woda jest wszechobecna we wszechświecie.

Do wyboru: lód, woda i para

Naukowców nie dziwi sam fakt znalezienia wody, ale jej ilość. Cząsteczka wody (dwa atomy wodoru i jeden atom tlenu) jest stosunkowo prosta i występuje we wszechświecie powszechnie. Bardzo często łączy się ją z obecnością życia. Faktem jest, że życie, jakie znamy, jest uzależnione od obecności wody. Ale sam fakt istnienia gdzieś wody nie oznacza istnienia tam życia. Po to, by życie zakwitło, musi być spełnionych wiele różnych warunków. Woda wokół wspomnianego kwazaru jest w stanie gazowym, a woda niezbędna do życia musi być w stanie ciekłym. Nawet jednak ciekła woda to nie gwarancja sukcesu (w poszukiwaniu życia), a jedynie wskazówka.

Takich miejsc, którym badacze się przyglądają, jest dzisiaj w Układzie Słonecznym przynajmniej kilka. Woda może tu występować – tak jak na Ziemi – w trzech postaciach: gazowej, ciekłej i stałej. I właściwie we wszystkich trzech wszędzie jej pełno. Cząsteczki pary wodnej badacze odnajdują w atmosferach przynajmniej trzech planet Układu Słonecznego. Także w przestrzeni międzygwiezdnej. Woda w stanie ciekłym występuje na pewno na Ziemi. Czasami na Marsie, najprawdopodobniej na księżycach Jowisza, ale także – jak wykazały ostatnie badania – na księżycach Saturna. A na jednym z nich – Enceladusie – z całą pewnością. Gdy kilka lat temu amerykańska sonda kosmiczna Cassini-Huygens przelatywała blisko tego księżyca, zrobiła serię zdjęć, na których było wyraźnie widać buchające na wysokość kilku kilometrów gejzery. Zdjęcia tego zjawiska były tak dokładne, że badacze z NASA zauważyli w buchających w przestrzeń pióropuszach nie tylko strugi wody, ale także kłęby pary i… kawałki lodu. Skąd lód? Wydaje się, że powierzchnia Enceladusa, tak samo zresztą jak jowiszowego księżyca Europy, pokryta jest bardzo grubą (czasami na kilka kilometrów) warstwą lodu. Tam nie ma lądów czy wysp. Tam jest tylko zamarznięty ocean. Cały glob pokryty jest wodą.

061215_europa_02

Powierzchnia jowiszowego księżyca Europa

Nie tylko u nas

Skoro cała powierzchnia księżyców Jowisza i Saturna pokryta jest bardzo grubym lodem, skąd energia gejzerów? Skąd płynna woda pod lodem? Niektóre globy żyją, są aktywne. Ich wnętrze jest potężnym reaktorem, potężnym źródłem ciepła. Tak właśnie jest w przypadku zarówno Europy, jak i Enceladusa. Swoją drogą ciekawe, co musi się dziać pod kilkukilometrowym lodem, skoro woda, która wydrążyła sobie w nim lukę, wystrzeliwuje na wiele kilometrów w przestrzeń?

Może nie morza, jeziora czy chociażby bajora, ale lekka rosa – wodę znajduje się także na powierzchni naszego Księżyca. Zaskakujące odkrycie to dzieło indyjskiej sondy Chandrayaan-1, potwierdzone przez dwie amerykańskie misje (Deep Impact i Cassini).

Niejedna praca naukowa powstała też na temat wody na Czerwonej Planecie. Wiadomo, że jest na marsjańskich biegunach. Nie brakuje jednak danych, że woda, nawet w stanie ciekłym, pojawia się czasowo w różnych innych miejscach planety. Wyraźnie ją widać na zboczach kraterów, o ile padają na nie promienie letniego Słońca.

Z badań amerykańskiej sondy Messenger, która od 2004 roku badała Merkurego, wynika, że woda jest także w atmosferze pierwszej od Słońca gorącej planety. Co z innymi planetami spoza Układu Słonecznego? Na nich też pewnie jest mnóstwo wody. Tylko jeszcze o tym nie wiemy. Chociaż… Pierwszą egzoplanetą, na której najprawdopodobniej jest woda jest HD 189733b, która znajduje się 63 lata świetlne od nas. Ta planeta to tzw. gazowy gigant. Ogromna kula gorących i gęstych gazów z płynnym wnętrzem. Gdzie tutaj miałaby być woda? Wszędzie – twierdzą badacze. Dzięki aparaturze wybudowanej w California Institute of Technology, USA udało się odkryć, że mająca prawie 1000 st. C atmosfera zawiera duże ilości pary wodnej.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Czy któreś z tych kosmicznych źródeł wody będzie nas w stanie uchronić przez niedostatkiem pitnej wody na Ziemi? Tego jeszcze nie wiemy, choć problem braku podstawowej do życia substancji wydaje się być coraz bardziej palący. Przekonują o tym hollywoodzka gwiazda – Angela Basset – i jej goście – światowej sławy naukowcy, którzy próbują odpowiedzieć na pytanie czy czeka nas „Wodna Apokalipsa” w ostatnim już odcinku niezwykłej serii „Megaodkrycia” na National Geographic Channel. Jeśli chcecie wiedzieć, gdzie najtęższe umysły naukowe szukają teraz źródeł H2O, oglądajcie „Wodną Apokalipsę” – już w niedzielę, 13 grudnia, o 22.00 na National Geographic Channel.

 

 

Brak komentarzy do W kosmosie woda jest wszędzie!

Fagi – dobre wirusy

– Jak to się dzieje, że ci ludzie nie chorują – zastanawiał się widząc Hindusów kąpiących się i pijących wodę z Gangesu. Rzeki, która jest ściekiem. Więcej! wszystko wskazuje na to, że oni są przez to zdrowsi !

Bakterie stają się dla nas coraz groźniejsze. Coraz częściej zdarza się, że nie dają im rady nawet najbardziej zaawansowane terapie antybiotykowe. Sytuacja wymaga podjęcia niestandardowych metod. A może przeciwnie, wymaga powrotu do źródeł?

Ta historia rozpoczyna się w Indiach ostatnich lat XIX wieku. To wtedy przypłynął tam młody brytyjski biochemik i bakteriolog Ernest Hanbury Hankin. Ma jeden cel, walkę z cholerą, która miejscami przybiera rozmiary epidemii. Sukcesów nie ma praktycznie żadnych, a jego desperację potęguje fakt, że w Indiach zdają się nie działać reguły, których nauczył się w Anglii. Młody badacz zauważa bowiem, że na cholerę bardzo rzadko chorują ci, którzy kąpią się w rzece Ganges. Dla Hindusów sprawa jest oczywista, wody rzeki są święte, a każdy kto się w nich kąpie jest „chroniony”. Dla naukowca, sprawa jest trudna do zrozumienia. Przecież Ganges to ściek! To miejsce które powinno być źródłem problemu, a nie lekarstwem. Ku konsternacji większości Europejczyków, a już na pewno tych, którzy mieli wykształcenie medyczne czy biologiczne, Hindusi wodę z Gangesu pili. I? I nic im się nie działo. Jak to możliwe? Brytyjski naukowiec uważał, że w rzece musi być coś, co pijących jej wodę uodparnia. Fenomen dotyczył nie tylko wody w Gangesie, ale także w innych rzekach, równie zanieczyszczonych.

W 1896 roku Ernest Hanbury Hankin opublikował pracę naukową, w której stawiał tezę, że, w badanej przez niego wodzie istnieją czynniki antybakteryjne, które są na tyle małe, że nie sposób zatrzymać ich nawet na najdrobniejszych filtrach. Praca nie została jednak zauważona. Dopiero 20 lat później odkryto co tym czynnikiem jest. Dwa zespoły badaczy, brytyjski i francuski, odkryły bakteriofagi, czyli wirusy, które niszczą bakterie. Nazwa bakteriofag oznacza dosłownie „zjadacze bakterii”. W rzeczywistości wirusy nie pożerają bakterii. Ale o tym za chwilę. Dalsze badania pokazały, że w zasadzie każda bakteria ma swojego faga, czyli wirus, który bez większych problemów może sobie z nią poradzić. Pierwszy przypadek uleczenia wirusami zakażenia bakteryjnego (konkretnie chodziło o infekcję laseczką czerwonki, czyli siejącą śmierć dezynterią) miał miejsce w 1915 roku.

ganges

Zagadka: znajdź głowę chłopaka w śmieciach

Pierwszy nazwę bakteriofag zastosował pracujący w Paryżu Kanadyjczyk, Félix d’Herell. Nie jest ona do końca ścisła, bo sugeruje, że wirusy pożerają bakterie. W rzeczywistości wirusy niczego nie zjadają. Nie są organizmami żywymi, więc nie potrzebują źródła energii do zaspokajania swoich potrzeb. Jak w takim razie zabijają? Bakteriofagi, jak zresztą wszystkie wirusy, komórki żywych organizmów wykorzystują. Wirusy są kapsułkami zawierającymi materiał genetyczny. Nie potrafią same się poruszać. Posiadają jednak „klucze” do żywych komórek. Każda żywa komórka w swojej ścianie ma receptory. To coś w rodzaju zamka do drzwi. Ten, kto posiada klucz, może wejść do środka. Wirusy posiadają klucze, czyli białka pasujące do receptorów. Gdy cząsteczka wirusa znajdzie się w bezpośredniej bliskości komórki, jest bardzo prawdopodobne, że dojdzie do adsorpcji. Wirus otwiera zamek. Chwilę później następuje penetracja. Specjalną igiełką fag wkłuwa się do wnętrza bakterii i wstrzykuje tam swój materiał genetyczny. Komórka (w przypadku fagów komórka bakteryjna) nie ma pojęcia, że jest zainfekowana. Przecież wirus miał „legalne klucze”. Gdy materiał genetyczny znajdzie się w środku, dochodzi do tzw. replikacji genomu. Komórka replikuje wirusy z taką prędkością, że wkrótce zostaje – dosłownie – rozerwana z powodu ich natłoku w swoim wnętrzu. Od momentu „włożenia klucza do zamka” do unicestwienia bakterii mija nie więcej niż 30 minut! Każda zainfekowana komórka wyprodukuje kilkadziesiąt wirusów. A każdy z nich gotowy jest do ataku na nową bakterię.

W naturalnych warunkach pomiędzy bakteriami i wirusami ustala się pewna równowaga, ale gdyby tak wirusy antybakteryjne namnażać i traktować jako najlepszy z dostępnych antybiotyków? Wirusami leczono zanim, zanim ktokolwiek wiedział, czym są ci „niewidzialni” zabójcy bakterii. Félix d’Herelle leczył fagami śmiertelnie chorych na czerwonkę. „Ozdrowienie” następowało po kilkudziesięciu godzinach. Dzisiaj do koncepcji leczenia wirusami coraz częściej się wraca. Antybiotyki wydają się skuteczne, ale tylko na krótką metę. Bakterie potrafią się na nie uodparniać. W Polsce jedna trzecia szczepów dwoinki zapalenia płuc jest odporna na penicylinę. Na fagi nie da się uodpornić, bo te mutują tak samo szybko jak same bakterie. W Polsce znajduje się jeden z dwóch na świecie (i jedyny w Europie) ośrodek naukowy, który prowadzi terapię bakteriofagami. Kilka lat temu rozmawiałem z jego szefem, profesorem Andrzejem Górskim. Powiedział mi wtedy, że do Laboratorium Bakteriofagowego w Instytucie Immunologii i Terapii Doświadczalnej PAN we Wrocławiu zgłaszają się setki osób cierpiących na zakażenia, których żadne antybiotyki nie potrafią wyleczyć. Naukowcom z Wrocławia udaje to w ponad 80 procentach. W porównaniu z terapią antybiotykami, fagi są tańsze, a na pewno nie mniej skuteczne. Ponadto leczenie fagami nie powoduje skutków ubocznych, bo działanie wirusów jest ściśle ukierunkowane i wybiórcze. Określony bakteriofag atakuje tylko jeden gatunek bakterii. W ten sposób po terapii fagami oszczędzamy te „dobre bakterie”, np. z wnętrza układu pokarmowego. Tymczasem antybiotyki tak nie potrafią. – Czasami wystarczy kilkadziesiąt godzin, by osoba od lat cierpiąca na zakażenie uwolniła się od kłopotu. Leczymy nawet infekcje wywołane przez szczepy gronkowca złocistego – śmiercionośne bakterie, będące największym postrachem oddziałów intensywnej terapii – mówił mi prof. Górski.

Skoro mają tyle zalet, dlaczego bakteriofagami nie leczy się powszechnie? Przeszkodą jest prawo. Formalnie (w Unii Europejskiej i USA) przed skomercjalizowaniem, terapia musi być zarejestrowana, a jeszcze wcześniej poprzedzona badaniami klinicznymi. I tutaj pojawiają się problemy formalne. Terapia fagami nie jest zunifikowana, tylko po to by była skuteczna musi być tworzona dla każdego pacjenta osobno. Tego typu postępowanie wymyka się jednak normom, jakie ustalają prawnicy i urzędnicy. Nie bez znaczenia jest pewnie fakt, że przemysł farmaceutyczny czerpie ogromne korzyści z produkcji antybiotyków. Tańsza i w wielu przypadkach skuteczniejsza metoda leczenia fagami może być traktowana jako niechciana konkurencja. – Terapia fagowa to z formalnego punktu widzenia wciąż eksperyment, a do zaakceptowania nowości potrzeba czasu – powiedział mi kilka lat temu prof. Górski. Od tego czasu nic się nie zmieniło.

Drugi – poza Polską – ośrodek leczący fagami znajduje się w stolicy Gruzji, Tbilisi. Założył go zresztą Félix d’Herelle, ten sam, który nadał nazwę bakteriofagom. Ten zagorzały komunista pracował w Związku Radzieckim do śmierci. Gruziński instytut nie podlega pod prawo europejskie i amerykańskie, więc ma większą swobodę w działaniu, niż ośrodek we Wrocławiu. Kilka lat temu, Instytut z Gruzji założył filię w Meksyku, gdzie nie obowiązuje amerykańskie prawo, a bogatym (i chorym) Amerykanom znacznie łatwiej dojechać tam niż do Gruzji.

 

1 komentarz do Fagi – dobre wirusy

Żyć albo nie żyć

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Badania kosmosu bardzo rzadko dają jednoznaczną odpowiedź na postawione pytanie. To raczej sztuka zbierania skrawków informacji, z których żadna nie jest rozstrzygająca, ale wszystkie razem dają obraz sytuacji.

Woda była czy nie?

Tak jest niemal ze wszystkim. Ale zatrzymajmy się na Marsie. Czy jest woda na Marsie? Tak, jest. Wiemy to dzisiaj, ale musiały minąć długie lata, by móc tak jednoznacznie na to pytanie odpowiedzieć. Bo czy dowodem jest to, że z orbity widać struktury, które wyglądają jak wyschnięte koryta rzek? Czy dowodem jest to, że gdzieniegdzie – na zdjęciach z orbity – widać pojawiające się jak gdyby strużki wody? Szczególnie na nasłonecznionych zboczach gór. Czy dowodem na istnienie zamarzniętej wody są czapy czegoś białego na marsjańskich biegunach albo po prostu teoria, która mówi, że woda na Marsie być powinna? Żaden z wyżej wymienionych faktów sam w sobie o niczym nie świadczy. Ale wszystkie one razem powodują, że dzisiaj fakt istnienia wody na Czerwonej Planecie nie jest podawany w wątpliwość. Do tego dochodzi jeszcze jeden eksperyment, a mianowicie wykrycie pary wodnej w bardzo rzadkiej marsjańskiej atmosferze. A co z życiem?

Tym dawnym i tym obecnym? Sytuacja wygląda bardzo podobnie. To, że w znalezionym na Ziemi meteorycie pochodzącym z Marsa są ślady funkcjonowania żywych organizmów, o niczym nie musi świadczyć. Bakterie mogły do niego wejść, gdy skała była już na Ziemi. Istnienie wody i warunków (temperatura, promieniowanie, ciśnienie), które umożliwiały istnienie życia, także nie jest żadnym dowodem. Podobnie jak to, że na Marsie znajdowane są skały niemal identyczne jak skały osadowe pochodzenia biologicznego na Ziemi. Na to nakłada się teoria, która mówi, że w części, a być może nawet w całości życie czy elementy składowe życia na Ziemię przyniosły komety. Ale czy z tego faktu wynika, że na Marsie było życie? Może rzeczywiście komety tam uderzały, ale nie da się sprawdzić, czy najprostsze komórki tam się rozwinęły. I podobnie jak z wodą: żaden z tych argumentów sam z siebie o niczym nie świadczy, ale wszystkie równocześnie… Badania kosmiczne są jak puzzle – żaden nie zdradzi, co kryje cały obraz, ale im więcej mamy ich w ręku, tym więcej wiemy o świecie, który opisują. Właśnie znaleziono kolejny klocek. Niezwykle ważny i pasujący do poprzednich. Tym klockiem jest metan.

Co z tym życiem?

Ściślej rzecz biorąc, nie tyle metan, ile szybkie zmiany jego stężenia. O tym, że w niezwykle rzadkiej marsjańskiej atmosferze znajdują się niewielkie ilości metanu, wiedziano od dawna. Problemem było jego pochodzenie. Metan może powstawać na wiele różnych sposobów, ale na Ziemi niemal wszystkie związane są z działalnością organizmów żywych. Metan – zwany czasami gazem błotnym – składa się z atomu węgla i czterech połączonych z nim atomów wodoru (jego wzór to CH4). Jest bezwonny i bezbarwny. Skąd się wziął na Marsie? To jest właśnie pytanie za milion dolarów. A może nawet za 100 milionów. Amerykański łazik marsjański Curiosity nad wywierconym przez siebie otworem wykrył dziesięciokrotny wzrost stężenia metanu. Otwór nie był zbyt głęboki, metan zaczął się ulatniać z gruntu, który znajduje się zaraz pod powierzchnią. Do odkrycia doszło podczas badań wewnątrz 154-kilometrowego krateru Gale. W warunkach ziemskich metan jest w 95 proc. pochodzenia organicznego i związany ściśle z cyklem życiowym roślin i zwierząt. Ten fakt o niczym jeszcze nie przesądza. Po pierwsze dlatego, że pozostałe 5 proc. to produkcja metanu w procesach geologicznych. A po drugie kto powiedział, że znamy wszystkie procesy produkcji metanu? Być może na Marsie mają miejsca takie, których na Ziemi nie ma. – Te okresowe znaczne wzrosty zawartości metanu w atmosferze, tj. szybki wzrost, a później spadek, wskazują, że ich źródło musi być stosunkowo niewielkie – przypuszcza Sushil Atreya z Uniwersytetu Stanu Michigan, który bierze udział w projekcie Curiosity. – Może być wiele źródeł, biologicznych i niebiologicznych, takich jak np. reakcje zachodzące między wodą i skałami – dodał.

Podsumowując. Co wiemy nowego? Jeden z marsjańskich łazików wykrył szybko zmieniające się stężenie metanu. Czy to znaczy, że znaleziono tam życie? Nie! Czy to znaczy, że było tam kiedyś życie? Nie! W takim razie co to znaczy? Tylko tyle, albo aż tyle, że mamy kolejny kawałek układanki. Nie znamy jeszcze pełnego obrazu, ale wydaje się, że jest na nim planeta, która kiedyś obfitowała zarówno w płynną wodę, jak i w życie. Planeta, na której to życie przetrwało do dzisiaj.

Brak komentarzy do Żyć albo nie żyć

Ukryty świat

Patrząc na zdjęcia satelitarne najzimniejszego z ziemskich kontynentów, czyli Antarktydy, trudno się powstrzymać od stwierdzenia „lodowa pustynia”. Tymczasem gruba warstwa lodu skrywa nieznany świat. Ostatnio pod lodem odkryto nawet wulkan.

Wyobraźcie sobie zupełnie nieznany świat. Świat taki sam jak nasz, tak samo różnorodny. Na powierzchni porównywalnej z powierzchnią Europy są góry i jeziora. Są równiny i doliny. Są wąwozy, rwące rzeki, zatoczki i fiordy. Pod grubą na kilometr warstwą lodu znajduje się nawet aktywny wulkan. Tak przynajmniej twierdzą autorzy jednego z artykułów opublikowanych w „Nature Geoscience”. Ostatni raz eksplodował kilka tysięcy lat temu, ale sejsmolodzy nie mają wątpliwości, że mógłby wybuchnąć nawet jutro. Co by się wtedy stało? Trudno powiedzieć.

Ogień pod lodem

Wszystko zależy od wielkości wulkanu i siły eksplozji. Z badań prowadzonych z powierzchni samolotu wynika, że wokół wulkanu, w głębokim lodzie, znajdują się pozostałości po poprzedniej erupcji. Chodzi głównie o warstwę popiołów. Czy siła wybuchu mogłaby przetopić kilometrowej grubości warstwę lodu? Bez problemu. W mniej pesymistycznym scenariuszu lawa wylałaby się pod lód i zaczęłaby go topić od spodu. We wspomnianym już Nature Geoscience, kilka lat temu została wydrukowana praca dotycząca erupcji innego podlodowego wulkanu. Zdaniem badaczy miał on eksplodować około 2200 lat temu, a skutkiem tego wydarzenia było wyrwanie w grubej pokrywie lodowej dziury. Na zewnątrz, na wysokość ponad 10 kilometrów buchały kłęby pary, wylatywał popiół i kawałki skalne. Także w tym przypadku część badań prowadzono z pokładu samolotu na którym zainstalowany był radar. To na nich widać podlodowy obszar zalany lawą. Potężną eksplozję potwierdziły także analizy rdzeni lodowych.

A wracając do dopiero co odkrytego wulkanu. W czasie prowadzonych w 2010 r. i 2011 r. badań w północnej części Antarktydy uczeni zarejestrowali powtarzające się wstrząsy. Ich siła była niewielka, a częstotliwość drgań na tyle mała, że od razu wykluczono, że ich źródłem jest ruch płyt tektonicznych czy pęknięcia warstwy lodu. Badacze wydedukowali, że wstrząsy muszą być efektem ruchu magmy pod ziemską skorupą. Tym bardziej, że źródło wstrząsów (a właściwie drgnięć) znajduje się na głębokości około 30 kilometrów.

Stożek wulkaniczny, którego szczyt znajduje się kilometr pod powierzchnią lodu, nie jest jedyną strukturą geologiczną, którą ukrywają lody Antarktydy. Gdyby móc pod nie zajrzeć, gdyby pewnego dnia całkowicie zniknęły (pomijając fakt, że znacząco podniosłoby to poziom światowego oceanu), naszym oczom ukazałby się niezwykle różnorodny krajobraz.

bbc_gamburtsevsJeziora i rzeki

Na wschodnim krańcu Antarktydy znajduje się potężne pasmo Gór Gamburtsewa. Rozciąga się na długości ponad 1200 km, a najwyższy jego szczyt ma wysokość 3400 metrów. Przy założeniu, że nie pokrywa jej lód. Żaden z wierzchołków pasma nie wystaje ponad powierzchnię lodu. Ich najwyższy wierzchołek znajduje się 600 metrów pod lodem. Wiele wskazuje na to, że to właśnie na zboczach Gór Gamburtsewa, 30 milionów lat temu, zaczął powstawać lodowiec, który dzisiaj skuwa cały kontynent. Pod tym lodowcem znajduje się np. podlodowe jezioro Wostok. W zeszłym roku dowierciła się do niego ekipa rosyjskich naukowców. Wostok jest jednym z prawie 400 jezior, które znajdują się pod lodami Bieguna Południowego. Te jeziora zawierają płynną wodę. Jezioro Wostok znajduje się około 4 km pod pokrywą lodu. Długość jeziora wynosi 250 kilometrów, a szerokość około 50 km. Ten słodkowodny akwen ma głębokość kilkuset metrów. Co ciekawe, wody jeziora były odizolowane od świata zewnętrznego od przynajmniej 500 000 lat! Dlaczego podlodowe jeziora nie zamarzają? Bo grube warstwy lodu powodują spory wzrost ciśnienia. Wraz ze wzrostem ciśnienia, spada temperatura zamarzania woda. Od dołu woda często jest także podgrzewana przez ciepło geotermalne. W efekcie woda w jeziorach ma temperaturę kilku stopni poniżej zera. Co ciekawe kilka lat temu okazało się, że na Jeziorze Wostok występują niewielkie przypływy. Acha, i jeszcze jedno. Bardzo często podlodowe jeziora są zasilane wodami lodlodowych rzek. Na Antarktydzie jest ich zała sieć. Niektóre pojawiają się okresowo, inne płyną cały czas.

NASA-Goddard-IceBridge-BedMap-BedMap2-Antartcia-Visual-topography-map1W którą stronę zjedzie lód?

Kilka lat temu, na spotkaniu Amerykańskiej Unii Geofizycznej, grupa naukowców z Uniwersytetu Stanowego Ohio, USA ogłosiła, że opracowuje dokładną mapę Grenlandii. Szef tej grupy prof. Ken Jezek powiedział, że chciałby zobaczyć jak wygląda Grenlandia bez śniegu i lodu. Dzisiaj już mniej więcej wiadomo. Wyspa jest krainą górzystą, tak jak sąsiadujące z nią północno – wschodnie terytoria Kanady. Czy kiedykolwiek po tych górach będzie można spacerować? Kiedyś może tak. Badania podlodowego krajobrazu właśnie w kontekście zmian klimatu, mogą mieć całkiem praktyczne znaczenie. Inaczej będą się zachowywały ogromne bloki zamarzniętej wody, gdy leżą na płaskim terenie, a inaczej gdy są osadzone na stromym wzniesieniu. W tym drugim przypadku, można się spodziewać, że z powodu podwyższającej się wokół temperatury, w pewnym momencie ześlizgną się ze skał na których są osadzone. Tym bardziej, że część wody z topiących się lodów spływa szczelinami w dół i podcieka pomiędzy stały ląd i lodowe bloki. Badając topografię i struktura gruntu pod lodem, naukowcy mogą próbować przewidzieć, jak będą się w przyszłości zachowywały duże masy lodu.

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Ukryty świat

Czy życie pochodzi z kosmosu?

Desant ziemskiego życia na niektóre globy w Układzie Słonecznym wcale nie byłby skazany na niepowodzenie. Część z prostych, jednokomórkowych organizmów mogłaby bez kłopotu żyć na jowiszowych księżycach, na Marsie czy nawet Wenus.

Desant ziemskiego życia na niektóre globy w Układzie Słonecznym wcale nie byłby skazany na niepowodzenie. Część z prostych, jednokomórkowych organizmów mogłaby bez kłopotu żyć na jowiszowych księżycach, na Marsie czy nawet Wenus.

800px-Grand_prismatic_spring

 

 

 

 

 

 

 

 

 

Grand Prismatic Spring to największe gorące źródła w Parku Narodowym Yellowstone, USA. Woda w jeziorze na zdjęciu może mieć temperaturę do 90°C. Takie warunki życiu jednak nie przeszkadzają. Jaskrawe kolory na zdjęciu to właśnie „zasługa” termofili – lubiących wysoką temperaturę bakterii.

 

Człowiek nie docenia możliwości adaptacyjnych przyrody. Niedaleko od Chicago postanowiono wiele lat temu zasypać hutniczym żużlem jezioro Lake Calumet. W efekcie woda w małych zbiornikach wodnych stała się bardziej zasadowa niż woda utleniona. Podczas gdy czysta woda w skali pH (to powszechnie używana przez chemików miara kwasowości i zasadowości roztworów wodnych) ma wartość 7, woda utleniona około 12, tak w oczkach wodnych w okolicach dawnego Lake Calumet był roztwór o pH 12,8 ! U człowieka taka mocna zasada poparzyłaby skórę. Jakie było zdziwienie naukowców gdy po zbadaniu próbek pobranych z oczek, okazało się, że jest w nich życie. Małe organizmy żyją także w żrących jak kwas wodach rzeki Rio Tinto na południu Hiszpanii. Jej pH wynosi  2.

Żyjątka z Lake Calumet i z Rio Tinto należą do tej samej grupy tzw. ekstremofili, organizmów, które zadziwiają swoją zdolnością do życia w warunkach ekstremalnych. Naukowcom znane są bakterie, które zamieszkują geotermalne dna oceanów, gdzie temperatura przekracza 150 st. Celsjusza (tzw. termofile) i takie które rozmnażają się na odpadach promieniotwórczych. Niektóre są obojętne na promieniowanie ultrafioletowe, a inne na ciśnienie dochodzące aż do 250 atmosfer (barofile). Znane są też takie, które żyją w wodzie tak słonej, że nie zamarzającej nawet przy kilkudziesięciu stopniach poniżej zera (to halofile). W maleńkiej próbce wody ze śniegów Bieguna Południowego znaleziono od  200 do 5 tyś bakterii, mimo że temperatury dochodzące tam do minus 80 stopni Celsjusza nie są rzadkością !

Jak to się dzieje, że organizmy żywe adoptują się do warunków tak ekstremalnych, skoro mogłyby „wybrać” te znacznie przyjaźniejsze ? Każdy chce być oryginalny – nawet jednokomórkowiec. To nie tylko żart, ale i jedna z zasad przetrwania. W skrajnie nieprzyjaznych warunkach jest mniejsza konkurencja, a to zwiększa szansę na przeżycie. Te organizmy, które zdołają się przystosować, mogą liczyć na swoisty bonus. Na problem można spojrzeć także z innej strony. A może ekstremofile wcale nie musiały się  przystosowywać do niegościnnych (gdzieniegdzie) warunków na Ziemi? Może ekstremalne jednokomórkowce na Ziemię przywędrowały z miejsc, gdzie tak właśnie ekstremalnie się żyje ? W Układzie Słonecznym jest wiele miejsc, gdzie żyjące teraz na Ziemi ekstremofile bez trudy by sobie poradziły. Czy to znaczy, że pochodzą one właśnie stamtąd ?

Można się zastanawiać skąd wzięły się u nas tak nietypowe organizmy, ale można też korzystając z tego że już tutaj żyją dokładniej im się przyjrzeć. Naukowcy robią to bardzo chętnie, bo – wiadomo – badanie czegoś oryginalnego jest pasjonujące. Jedną z częściej w tym kontekście badanych bakterii jest Deinococcus radiodurans, jednokomórkowiec, niezwykle odporny na wysokie dawki promieniowania jonizującego. Przeżywa do 1,5 mln radów, podczas gdy większość organizmów żywych umiera przy 1 tyś. radów. Niezwykła odporność bakterii wynika z ciasno splecionego DNA. Dzięki temu naprawa popękanych jego kawałków trwa o wiele krócej. Poza tym bakteria ma aż cztery pełne kopie genomu. Raczej trudno sobie wyobrazić, że wszystkie one na raz ulegną uszkodzeniu w tym samy miejscu. Wiele prostych organizmów ma także niezwykłą zdolność tworzenia form przetrwalnikowych. Naukowcy znaleźli bakterie, które 250 milionów lat „przezimowały” wewnątrz kryształków soli. Znany jest też przypadek glonów Hemichloris antarctica, które wydają się być zupełnie niewrażliwe na wielokrotne zamrażanie i odmrażanie. Czy takie umiejętności nie są pomocne w przetrwaniu każdych warunków ?

Wraz z odkrywaniem nowych gatunków ekstremofili, poszerza się margines w którym istnieć może życie. Do niedawna nie obejmował nawet całej Ziemi. Uważano, że w tych najbardziej nieprzyjaznych jej częściach życia po prostu nie ma. Dziś wiadomo, że życie jest wszędzie i dostarczono dowodów na to, że w zasadzie mogłoby istnieć w wielu miejscach Układu Słonecznego. Na Marsie, w atmosferze Wenus czy na księżycach Jowisza.

1 komentarz do Czy życie pochodzi z kosmosu?

Type on the field below and hit Enter/Return to search