Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: pamięć

Za dużo liczb.

To nie tak, że nie mamy lekarstwa na raka z powodu prostej niewiedzy. To nie tak, że zatruwamy środowisko z powodu niedoborów energii. Dzisiejszy świat cierpi z powodu nadmiaru. Niemal wszystkiego. Szczególnie nadmiaru danych.

To nie tak, że nie mamy lekarstwa na raka z powodu prostej niewiedzy. To nie tak, że zatruwamy środowisko z powodu niedoborów energii. Dzisiejszy świat cierpi z powodu nadmiaru. Niemal wszystkiego.

Lek na raka, szczepionka przeciwko malarii czy panaceum na choroby serca i nadwagę nie zostaną odkryte, dopóki nie nauczymy się wyciągać wniosków z bardzo dużej ilości danych. Danych wszelakiego rodzaju. Statystycznych, środowiskowych czy tych medycznych. Danych jest tak wiele, że nie sposób sobie z nimi poradzić. Chyba że do ich analizy zatrudnimy komputery.

Lek z komputera

W zasadzie od wielu lat to się już dzieje. Z danych, które do nich napływają, komputery wyciągają wnioski, a te są następnie wykorzystywane w życiu codziennym. Tak, to komputery regulują światłami na skrzyżowaniach dużego miasta. To, czy włączyć na którymś zielone, czy pozostawić czerwone, zależy od natężenia ruchu w całym mieście, od priorytetowych szlaków komunikacyjnych, od prac drogowych na szlakach alternatywnych, a nawet od tego, czy w kierunku miasta zbliża się np. burza. Człowiek nie poradziłby sobie z tak dużą ilością danych, nie byłby w stanie podejmować na ich podstawie decyzji.

escherichia-coli-1441194-1279x1229

Takich przykładów jak ruch w mieście jest znacznie, znacznie więcej. Podobnie działają systemy ruchu lotniczego, ale także linie produkcyjne w fabrykach czy systemy do analizy danych w laboratoriach naukowych, np. podczas projektowania leków. Żeby wprowadzić na rynek nowy lek, trzeba sprawdzić tysiące, a czasami miliony różnych kombinacji cząsteczek chemicznych. Każda najmniejsza zmiana budowy cząsteczki chemicznej leku, czasami oznaczająca „przestawienie” jednego atomu, może zmieniać jego działanie. Nie sposób eksperymentalnie sprawdzić wszystkich możliwych kombinacji, bo trwałoby to latami i kosztowałoby miliardy. Także tutaj z pomocą przychodzą komputery, które same dochodzą do pewnych wniosków, same domyślają się efektu. Do ostatecznego sprawdzenia pozostają tylko te wersje cząsteczki chemicznej, które – zdaniem oprogramowania – budzą największe nadzieje. I tak, od ruchu ulicznego, poprzez medycynę, bezpieczeństwo, fizykę (nikt już dzisiaj nie projektuje eksperymentów naukowych bez wcześniejszego uruchomienia symulacji komputerowych oraz systemów analizujących ogromne pakiety danych), telekomunikację, po zmiany społeczne… Wszędzie mamy za dużo danych, za dużo informacji, z którymi jakoś musimy sobie poradzić. Na szczęście nie jesteśmy sami, pomaga nam w tym tak zwana sztuczna inteligencja.

Podatki w Brazylii

Dlaczego tak zwana? Bo pomiędzy inteligencją człowieka czy nawet zwierzęcia a inteligencją maszyny jest sporo różnic. U nas inteligencja wiąże się w jakiś sposób ze świadomością i emocjami. U maszyn tylko (albo aż) – z umiejętnością uczenia się i wyciągania wniosków. Wielu ludzi boi się sztucznej inteligencji, bo przypisuje jej cechy, które mają inteligentni ludzie. Inteligentni, choć nie zawsze prawi. Stąd wizje buntujących się komputerów czy systemów, które mają swoje własne zdanie. Oczywiście odmienne od naszego. Ten bunt – jak się obawiamy – nie będzie polegał na tym, że nasze komputery zaczną nam robić głupie żarty, tylko na tym, że np. system komputerowy odetnie zasilanie energetyczne dużego miasta. To byłaby prawdziwa tragedia, tyle tylko, że w praktyce taka sytuacja dzisiaj jest niemożliwa. Nie dlatego, że systemy komputerowe nie rządzą zasilaniem, ale dlatego, że nie mają one woli i świadomości. Nie robią z własnej inicjatywy niczego, na co nie pozwoli im programista. Człowiek inteligentny to ktoś, o kim powiemy, że jest samodzielny i aktywny. Sztuczna inteligencja jest czymś, co jest bierne i podporządkowane człowiekowi. Owszem, radzi sobie świetnie z tasowaniem dużej ilości informacji, z sortowaniem ich i wyciąganiem z nich wniosków, ale nie potrafi choć na milimetr wyjść poza to, na co pozwoli jej programista.

Polska firma Cognitum stworzyła system, który jako jeden z najlepszych na świecie potrafi znajdować regularności czy wzory w dużych zbiorach danych. Jak mówią jego twórcy, ich system „pozwala wiązać fakty w morzu danych”. I robi to tak dobrze, że został włączony w ogromny program, którego celem jest wykrywanie nieprawidłowości podatkowych w… Brazylii. Wyłudzenia podatków można wykryć, analizując faktury, tyle tylko, że w tak dużym kraju jak Brazylia codziennie dochodzi do milionów transakcji. To powoduje, że w praktyce praca człowieka, a nawet tysiąca ludzi, jest skazana na porażkę. Co innego, jeśli chodzi o system komputerowy, który te faktury sprawdza i wyłapuje nieprawidłowości. W czasie rzeczywistym! Dzięki polskim programistom powstał system, który zainstalowano w urzędach skarbowych w całym kraju. Wyłapuje on nieprawidłowości od razu po tym, jak faktura zostanie wczytana do systemu. Co ciekawe, człowiek posługujący się systemem wcale nie musi być programistą. Z programem może się porozumieć, wpisując komendy w języku nieodbiegającym od tego, którym posługujemy się w rozmowie z innymi ludźmi. Może też te komendy po prostu wymówić. Program zrozumie.

Samo z siebie?

Ważną cechą systemu zaprojektowanego przez Cognitum jest to, że uczy się i potrafi wyciągać wnioski. Dzięki temu, jeżeli ktoś choć raz zastosował jakąś metodę na oszukanie urzędu podatkowego i ten trik zostanie wykryty, ta sama sztuczka już nigdy więcej się nie uda. Podobne metody można stosować do walki z bakteriami. One też mogą atakować na wiele różnych sposobów. Człowiek próbuje przewidzieć wszystkie drogi ataku, ale sprawdzenie tych scenariuszy trwałoby bardzo długo. Co innego, gdy do pomocy zaprosi się odpowiednio zaprojektowany system komputerowy. Mówimy o nim, że jest wyposażony w sztuczną inteligencję, ale tak naprawdę powinno się mówić o programach wyposażonych w umiejętność nauki i wyciągania wniosków.

digital-dreams-1155928-1280x960

Nasz mózg działa inaczej niż komputer, a inteligencja u ludzi i ta sztuczna, czyli komputerowa, to dwie różne rzeczy. Dlaczego tak się dzieje? Dlaczego komputerom nie potrafimy nadać cech naszej inteligencji, z poczuciem osobowości i z własnymi celami włącznie? Po pierwsze, wcale nie jestem przekonany, że to dobry pomysł. A po drugie… Trudno nadawać maszynom cechy, których nie rozumie się u siebie. Nie wiemy, czym jest świadomość, poczucie odrębności. Nie potrafimy tego zdefiniować na poziomie nauk ścisłych. Nie wiemy, które „obwody” w naszym mózgu za to odpowiadają, a więc nie wiemy, jak tą cechą obdarzyć maszyny. Czy kiedyś tę barierę przełamiemy? Czy kiedyś maszyny staną się naprawdę (tak po ludzku) inteligentne? Nie da się tego wykluczyć. Przy czym dzisiaj wydaje się, że są dwie drogi do osiągnięcia tego celu. Będzie to możliwe, gdy sami zrozumiemy, na czym polega nasza świadomość. Gdy tak się stanie, będziemy mogli podjąć decyzję, czy nowo poznaną cechą obdarować maszyny. Jest jednak jeszcze druga opcja. Być może świadomość i poczucie odrębności pojawiają się „same z siebie”, gdy mózg staje się skomplikowany. Może to efekt skali? Może wraz z rozbudową systemów informatycznych, wraz z coraz większym skomplikowaniem programów samoświadomość maszyn pojawi się sama? Bez naszego bezpośredniego udziału i bez naszej wiedzy?

Współczesny świat produkuje tak wiele informacji, że bez pomocy programów, które się uczą i które wyciągają z tej nauki wnioski, nie jesteśmy już w stanie funkcjonować. Tego już się nie cofnie. A jaka będzie przyszłość? Okaże się jutro.

 

Tekst ukazał się w tygodniku Gość Niedzielny
Brak komentarzy do Za dużo liczb.

Burza w sercu

Zakochanie to biochemia, genetyka i cała masa czynników które moglibyśmy nazwać „naukowymi”. Zakochane mózgu bada się najbardziej zaawansowanymi technikami jakie zna medycyna.

Połowa lutego to czas w którym o miłości i zakochaniu mówi się szczególnie często. Oczywiście za sprawą dnia świętego Walentego (czyli Walentynek), który w pop-kulturze jest szczególnie czczony przez zakochanych. Nieczęsto wspomina się o tym, że święty Walenty jest także patronem psychicznie chorych (epilepsję do niedawna nazywano chorobą Św. Walentego), a szkoda. Z naukowego punktu widzenia to co dzieje się w chwili zakochania ma sporo wspólnego z czystym szaleństwem. I rzeczywiście, u osób zakochanych obserwuje się mocne ukrwienie tej części mózgu, która jest odpowiedzialna za zachowania obsesyjne.

Kurierzy w mózgu

To nie tak, że o zakochaniu wiemy wszystko, to nie tak, że to co dzieje się w sercu, mózgu czy brzuchu zakochanego, potrafimy wyrazić równaniami fizycznymi czy reakcjami biochemicznymi. Wciąż sporo w tym tajemnicy. Dlaczego zakochujemy się w tej, a nie w innej osobie? Dlaczego czasami zauroczenie zamienia się w trwające dziesiątki lat głęboki i szczere uczucie, a czasami mija jak śnieg wiosną? Tego nie wiemy. Pozostaje operowanie danymi statystycznymi, uśrednieniami i szacunkami.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Z biochemicznego punktu widzenia za stan zakochania, który czasami porównuje się do stanu odurzenia jakimiś środkami, odpowiedzialne są przynajmniej trzy neurotransmitery (neuroprzekaźniki). To związki chemiczne, których cząsteczki działają trochę jak kurierzy w firmie, czyli przenoszą informacje z miejsca na miejsce. I tak jak w dużym wieżowcu kurierzy kursują pomiędzy biurkami, pokojami, korytarzami, piętrami czy nawet budynkami, tak w mózgu, linia startowa dla cząsteczki neuroprzekaźnika to dendryt, a meta to akson. Dendryty i aksony to „wypustki” komórek nerwowych. Impulsy elektryczne są przenoszone po zewnętrznej powierzchni komórki nerwowej, ale to neurotransmitery przenoszą informacje pomiędzy sąsiadującymi komórkami. W praktyce, impuls elektryczny (sygnał fizyczny) na zakończeniu każdej wypustki jest „tłumaczony” na sygnał chemiczny przenoszony przez neurotransmitery do kolejnej wypustki. Tam z powrotem chemia „zamienia się” w fizykę i w kolejnej komórce impuls elektryczny wędruje dalej. Neurotransmiterów jest bardzo dużo, ale w procesie zakochania uaktywniają się głównie trzy. Dopamina, serotonina i oksytocyna. Ta pierwsza pobudza te same części mózgu, które są pobudzane przez niektóre narkotyki. Powoduje, że świat wydaje się być bezproblemowy i piękny. Dopamina zmusza do aktywności, do działania. W skrócie… zakochany nie jest w stanie usiedzieć na miejscu. Potrzebuje swojego bodźca. Głosu, obrazu, zapachu osoby w której się zakochał. Ten bodziec uwalnia w mózgu nową porcję dopaminy. To dlatego zakochani zerkają na siebie ukradkiem.

Podczas gdy dopamina nas pobudza, drugi neuroprzekaźnik, serotonina, nas uspokaja. W końcu jest też oksytocyna. Ona pomaga nam nawiązywać relacje z drugą osobą. I dotyczy to nie tylko zakochanych. Oksytocyna jest uwalniana u matki np. podczas ssania piersi przez jej dziecko. Oksytocyna czyni nas bardziej uległymi, bardziej skorymi do współpracy i współodczuwania oraz ufnymi. Ale także bardziej szczodrymi (prezenty!) i zazdrosnymi.

Wieczna tajemnica?

Trzy wspomniane wyżej neuroprzekaźniki powodują, że świat wydaje się być różowy, bezproblemowy a osoba w którą jesteśmy zapatrzeni wydaje się nie mieć wad. Tym bardziej, że przytłumiona jest ta racjonalna część mózgu. Oczywiście nie u wszystkich działa to w ten sam sposób. Generalnie jednak, to mężczyźni szybciej się zakochują i szybciej odkochują. Kobiety są bardziej zrównoważone w tym względzie. Z czego to wynika? Teorii jest kilka, ale jedna z nich (tzw. teoria inwestycji rodzicielskiej) mówi, że skoro panie ponoszą większy biologiczny ciężar wydania na świat potomstwa, zostały obdarzone cechami, które proces zakochania się jakoś racjonalizują. To jak gdyby mieć w mózgu dodatkowe hamulce. Zgodnie z tą teorią, mężczyźni nie muszą mieć tych hamulców, bo… w sumie nie ponoszą odpowiedzialności biologicznej za przelotne romanse.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Na koniec jeszcze garść wyników badań statystycznych. Nie jest prawdą, że w miłości przeciwieństwa się przyciągają. Prawdą za to jest, że mężczyźni znacznie większą wagę przywiązują do wyglądu kobiety niż kobiety do wyglądu mężczyzny. Z jednym wyjątkiem, zarówno płeć piękna, jak i brzydka za bardziej atrakcyjne uważa osoby z dużymi oczami. Może dlatego panie optycznie powiększają sobie oczy makijażem? A może osoby zakochane wydaję się być atrakcyjniejsze, bo w okresie zauroczenia mają rozszerzone źrenice?

Zakochanie to biochemia, genetyka i cała masa czynników które moglibyśmy nazwać „naukowymi”. Zakochane mózgu bada się najbardziej zaawansowanymi technikami jakie zna medycyna. Dzięki rezonansowi magnetycznemu jesteśmy w stanie odróżnić zakochanie od pożądania. To kwestia dokładnej obserwacji tzw. pola brzusznego nakrywki, które wchodzi w skład tzw. układu nagrody. Rumieniące się policzki (uczucie gorąca włącza system chłodzenia), pocące się dłonie, drżący głos… ale to wciąż za mało, by zrozumieć to co dzieje się w głowie zakochanego. Czy kiedykolwiek zrozumiemy? Mam nadzieję że nie. Mam nadzieję, że miłość i zakochanie pozostaną przynajmniej trochę tajemnicze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Burza w sercu

Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

O kosmosie, ciekawości, przypadku i matematyce z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek

Z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek. Poniższy wywiad jest uzupełnieniem dwóch rozmów, które opublikowałem na kanale YouTube.com/Nauka To Lubie. Pierwsza z tych rozmów dotyczyła wszechświata, a druga człowieka. U dołu wywiadu znajdują się bezpośrednie odnośniki do obydwu rozmów.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Co się stało się prawie 14 miliardów lat temu? Możemy w ogóle udzielić jakiejkolwiek odpowiedzi?

Historię wszechświata rekonstruujemy poruszając się wstecz. Do 3 minut po wielkim wybuchu mamy wiedzę bardzo solidną, a potem grzęźniemy w hipotezach. Im bliżej początku, tym bardziej hipotetyczna jest nasza wiedza. Ta wiedza opiera się na teorii, ale teoria jest dobrze sprawdzona chociażby w takich miejscach jak laboratorium fizyki cząstek CERN, gdzie zderza się ze sobą np. protony.

Wiemy w takim razie co stało się po Wielkim Wybuchu, ale co było w punkcie zero?

Pytanie, czy taki punkt zero w ogóle był. Według klasycznej kosmologii, według teorii Einsteina, rzeczywiście punkt zero istniał i był tzw. osobliwością, czyli obszarem, w którym załamuje się pojęcie czasoprzestrzeni. Pojęcia czasu i przestrzeni tracą tam sens. Tam urywa się nasza wiedza, znane nam prawa natury przestają działać.

Skoro nie prawa przyrody, to co się tam dzieje?

To jest pytanie, na które nie znam odpowiedzi. Mamy dwie wielkie teorie: fizyka kwantowa i fizyka grawitacji. Fizyka kwantowa rządzi światem cząstek elementarnych, mikroświatem. Fizyka grawitacji rządzi kosmosem w wielkiej skali. Zaraz po Wielkim Wybuchu te dwie teorie nakładały się na siebie. Po to by wyjaśnić co dzieje się w osobliwości, trzeba połączyć te dwie teorie w jedną. Jest to niezmiernie trudne wyzwanie, bo te dwie siły mają zupełnie inną naturę. Moim zdaniem, to jest w tej chwili problem numer jeden fizyki teoretycznej. Mamy kilka, może nawet kilkanaście pomysłów jak grawitację i teorię kwantów ze sobą połączyć, ale żaden z nich nie jest potwierdzony doświadczalnie. Wszystko to są hipotetyczne rzeczy, posługują się bardzo ładną i zaawansowaną matematyką, ale nie mamy empirycznego rozstrzygnięcia, która jest prawdziwa i pewnie długo nie będziemy mieć.

Czy to jest przypadek, że człowiek został obdarzony umysłem, żeby dociekać tak skomplikowanych i abstrakcyjnych rzeczy?

Tego też nie wiemy. W każdym razie jest to rzecz niesamowita, że mamy taką władzę poznawania wszechświata. Bo pomyślmy nad tym. Jeżeli umysł ludzki powstał ewolucyjnie przez oddziaływanie z otoczeniem, to jak mówią biologowie, utrwalały się te cechy, które są potrzebne do przeżycia.

Wiedza o czarnej dziurze nie jest potrzebna?

Wiedza o czarnej dziurze jest absolutnie niepotrzebna do przeżycia.

Od biedy dałoby się połączyć wiedzę z sukcesem reprodukcyjnym. W końcu wolimy się otaczać ludźmi mądrzejszymi. Może intelekt czy wiedza to coś w rodzaju pożądanego przez przyszłego partnera gadżetu?

Myślę, że chyba wystarczyłby taki gadżet, który służyłby do uchylania głowy jak maczuga leci. Niemniej jednak jest to niesamowite, że człowiek ma tak rozwinięty umysł. Jeśli popatrzymy na historię, to tak naprawdę fizyka zaczęła się gdzieś w XVII wieku. Jesteśmy dopiero na samym początku. Co to jest kilkaset lat wobec 14 miliardów? I to jest rzeczywiście coś absolutnie niesamowitego. Można by to pytanie, które pan zadał, postawić w innej formie: czy złożoność ludzkiego mózgu wystarczy, ażeby zbadać złożoność wszechświata? Innymi słowy, czy złożoność wszechświata jest przykrojona na miarę naszego mózgu? Niezależnie od tego, czy jesteśmy sami we wszechświecie jako istoty rozumne, czy też są jacyś nasi bracia w rozumie, specjaliści mówią, że złożoność mózgu jest większa, niż złożoność całego wszechświata.

Ilość potencjalnych połączeń między komórkami w mózgu jednego człowieka jest większa niż ilość gwiazd we wszechświecie.

No właśnie. I to nas stawia w dość wyróżnionej pozycji. Natomiast czy dzięki tej złożoności możemy pojąć wszystko? Tu jest pewien logiczny paradoks. Jeśli chcielibyśmy pojąć wszystko, to musielibyśmy zrozumieć także mózg. Czy mózg może poznać sam siebie?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Mówiliśmy trochę o ewolucji, a z nią bardzo często wiąże się słowo „przypadek”. 

Arystoteles miał przyczynową koncepcję nauki, która w jakimś sensie jest aktualna do dzisiaj. Wyjaśniamy wszechświat według Arystotelesa przez ciągi przyczyn i skutków, takie łańcuchy przyczynowe. Natomiast on przypadek określił jako coś, co przerywa taki ciąg. Interweniuje przypadkowo w ten ciąg i zaburza go. I dlatego według niego nie może być wiedzy naukowej o przypadku. I ludzie uwierzyli, że przypadek jest jakimś takim obcym ciałem w nauce. Tymczasem okazuje się, że tak nie jest. Najbardziej dramatycznym czy widocznym przykładem próby oswajania przypadku jest ludzka chciwość. Jak ktoś gra hazardowo, to chce wygrać. Ludzie szukali więc jakiejś strategii, żeby zapewnić sobie zwycięstwo w totolotku, ruletce, czy w pokerze.

No i takiego sposobu nie znaleźli. Wygrana czy przegrana to kwestia przypadku.

Czy na pewno? Statystyka i rachunek prawdopodobieństwa mówią co innego. Gdyby było tak jak pan mówi, nie mogłyby działać np. banki czy towarzystwa ubezpieczeniowe, które liczą prawdopodobieństwo w związku z ubezpieczeniami na życie. Bez prawdopodobieństwa i statystyki nie byłoby dzisiejszej wiedzy. Ani fizyki, ani medycyny.

Bo statystyka daje odpowiedzi dotyczące ogółu a pojedynczy przypadek dalej jest dziełem… przypadku.

Też nie całkiem. W „Summa contra gentiles” św. Tomasz pisze, że boża opatrzność rządzi zdarzeniami ex casu del fortuna – dziejącymi się z przypadku lub losowo. Dwoje ludzi pobiera się, bo spotkali się, gdy spóźnił się pociąg. Czy to przypadek? Wszystko tu ma przyczynę. Pociąg się spóźnił, bo popsuła się lokomotywa. Młodzi ludzie byli w tym samym miejscu o tym samym czasie, bo każde z nich jechało w konkretne miejsce. W fizyce tak jest na każdym kroku. Dobrym przykładem jest zwykły rzut kamieniem. On jest opisany prostymi równaniami ruchu Newtona i wszystko jest – wydawałoby się – zdeterminowane, ale ja mogę przypadkiem tym kamieniem zamiast trafić w tarczę, to komuś w głowę. W nauce jest bardzo dużo miejsca na przypadki, a one same nie są zaprzeczeniem zasad przyrody. W siatce praw przyrody są pewne luzy na przypadki. Bez tych przypadków prawa przyrody by nie mogły działać.

A ten plan, te reguły, które tym wszystkim rządzą, te luzy, o których ksiądz profesor mówi, czy one jakoś powstały, czy one były zawsze? Jak to rozumieć?

No to jest problem genezy praw przyrody. I ja nie wiem jaka ona jest. To na pewno nie jest zagadnienie z dziedziny fizyki, bo fizyka zakłada prawa przyrody. Nie wyjaśnia ich. W każdym modelu fizycznym prawa fizyki są założone. Takie, a nie inne i koniec. Natomiast wyjaśnienie, skąd się biorą prawa przyrody, to już raczej należy do filozofii czy na przykład do teologii. Można powiedzieć, że to po prostu Pan Bóg stworzył.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To jest bardzo wygodne podejście. Pan Bóg stworzył, kropka. A może by się nad tym zastanowić ?

Często fizycy nie nazywają tego Panem Bogiem, ale skądś się one musiały wziąć. Einstein nie uznawał Boga w formie chrześcijańskiej. Raczej był bliżej panteizmu, ale używał hasła „Zamysł Boga” – the Mind of God. Może używał to jako metaforę, ale uważał, że zestaw praw przyrody to jest właśnie the Mind of God. I mówił: nie chciałbym nic więcej wiedzieć, tylko znać the Mind of God.

Znać boży zamysł… czyli to jedno równanie, które opisuje wszystko?

No tak. I tu są te granice fizyki, o których mówimy. Na to wszystko nakłada się matematyka, która jest uniwersalnym językiem opisu wszechświata. Tylko trzeba pamiętać, że matematyka nie oznacza wcale determinizmu.

2 + 2 zawsze równa się 4. Cała matematyka szkolna jest deterministyczna.

No bo w szkole się uczy najprostszych rzeczy: dodawania, odejmowania i pierwiastkowania. Niewiele więcej. W prawdopodobieństwie nic nie jest pewne, choć wszystko prawdopodobne. A to dopiero początek. Mechanika kwantowa posługuje się matematyką, która jest indeterministyczna. Wcześniej rozmawialiśmy o przypadkach. Ja rozróżniam dwa ich rodzaje. Jeden to przypadek wynikający z niewiedzy albo ignorancji. Np. mogę się z kimś założyć, czy z zza rogu wyjedzie tramwaj numer 8 czy 4. Ja nie wiem który i traktuję to w kategoriach przypadku, ale jeżeli te tramwaje są w drodze, to proces jest zdeterminowany. Natomiast czy są przypadki, zdarzenia, które rzeczywiście nie są zdeterminowane? Mechanika kwantowa jest świadectwem, że tak, są. I takie przypadki pojawiają się u podstaw całej naszej rzeczywistości.

Czy wszechświat ma jakieś granice geometryczne? Pytam zarówno o to, czy możemy dowolnie długo dzielić cząstki elementarne na coraz mniejsze kawałki, jak i o to, czy kosmos gdzieś się kończy?

Może być tak, że świat jest skończony, ale nie ma granicy. I wtedy idąc cały czas w jedną stronę, w końcu trafimy do punktu wyjścia. Modele otwarte mówią, że można zmierzać w jednym kierunku w nieskończoność. Nie ma żadnych naukowych powodów, by wszechświat miał granice. Natomiast czy można dzielić cząstki w nieskończoność? Nie wiem.

Co zapaliło małego Michała Hellera do tego by zajął się nauką? A co zapala już dorosłego księdza profesora by zajmował się nią dalej? 

Dorastałem w domu, gdzie rozmawiało się o nauce, o świecie. Ojciec był inżynierem, opublikował nawet kilka prac matematycznych. Od dziecka, jak tylko miałem jakąś książkę popularnonaukową, to się w niej zaczytywałem. I trudno tak ciekawymi rzeczami się nie zajmować. A dzisiaj? Chyba ta sama ciekawość co u małego Michała. Ciekawość jest motorem działania. Ale trzeba uważać, bo ona musi być pod kontrolą. Inaczej do niczego się nie dojdzie, niczego nie uda się wystarczająco dobrze zbadać. Na świecie żyje wielu geniuszy, którzy nie potrafili się ograniczyć. Wiedzą prawie wszystko o prawie wszystkim i zarazem niewiele. Wszystko ich za bardzo ciekawi. I w moim przypadku to zawsze było dość trudne i bywa trudne do dzisiaj. Interesuje mnie za dużo, a trzeba się ograniczyć do jednego.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Ksiądz Profesor Michał Heller jest teologiem, filozofem i kosmologiem. W 2008 roku jako jedyny dotychczas Polak został laureatem międzynarodowej Nagrody Templetona, przyznawanej za pokonywanie barier między nauką a religią. Jest autorem kilkudziesięciu książek. 

Opublikowany powyżej wywiad jest fragmentem rozmowy jaką przeprowadziłem z X. prof. Michałem Hellerem dla tygodnika Gość Niedzielny.
1 komentarz do Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

Jak działa alkohol?

Alkohol szkodzi zdrowiu. To hasło zna prawie każdy. Co dzieje się z alkoholem w organizmie człowieka? I co dzieje się z organizmem po spożyciu alkoholu.

Przełykany alkohol zaczyna być wchłaniany już jamie ustnej i przełyku. Najwięcej etanolu dostaje się jednak do krwi przez ścianki żołądka i jelita cienkiego. W tym drugim zaburza on zwykłe wchłanianie substancji odżywczych, a w żołądku może wywoływać stany zapalne. Mowa oczywiście o nadmiarze alkoholu oraz częstym i regularnym jego spożywaniu. Za wyjątkiem sytuacji chorobowych, niewielkie ilości alkoholu, np. lampka wina do kolacji czy kufel piwa wypity w czasie grilla – nikomu nie zaszkodzą. Przeciwnie mogą pomóc, alkohol jest antyoksydantem, czyli „likwiduje” wolne rodniki, które wpływają na starzenie się komórek. Mowa oczywiście o niewielkich ilościach alkoholu, a nie o jego nadużywaniu.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Potrzeba energii

A co dzieje się z alkoholem już wchłoniętym do krwi? Jest rozprowadzany po całym organizmie. Po to by rozłożyć cząsteczkę etanolu, potrzeba energii. Spada więc stężenie cukru we krwi. To może prowadzić do zawrotów głowy i drżenia rąk. Dokładnie tak samo organizm zacznie reagować na niski poziom cukrów gdy… przestaniemy jeść. Przy okazji obniżania poziomu cukru we krwi, wzrasta jej ciśnienie. Na ten proces wpływa jeszcze jeden mechanizm. Krew regularnie jest przepompowywana przez nerki. Te działają jak filtr i pozbywają się tego, co dla organizmu jest niepotrzebne albo szkodliwe. Do filtrowania etanolu nerki potrzebują bardzo dużej ilości wody. To właśnie dlatego, po spożyciu alkoholu oddajemy znacznie więcej moczu niż po wypiciu takiej samej ilości np. wody. Wypicie 250 ml wina, oznacza, że w ciągu 2-3 godzin pozbędziemy się przynajmniej 500 ml wody. Niebezpieczne odwodnienie organizmu po spożyciu dużej ilości alkoholu jest realnym zagrożeniem. A wypicie nadmiernej jego ilości zawsze kończy się pragnieniem i nieprzyjemnym wrażeniem suchości w ustach. Pragnienie jest jednym z elementów tzw. kaca, czyli zespołu objawów poalkoholowych.

Najbardziej obciążona po spożywaniu alkoholu jest jednak wątroba. Tylko 2 proc. spożytego alkoholu jest usuwanego z organizmu w niezmienionej postaci. Reszta, czyli 98 proc. jest najpierw metabolizowana. Zajmuje się tym właśnie wątroba. To proces bardzo obciążający i długi. Dlatego właśnie efekty spożycia alkoholu utrzymują się tak długo. Alkohol krąży we krwi przez kilka, kilkanaście a w skrajnych wypadkach nawet kilkadziesiąt godzin. Na dodatek sposób metabolizmu alkoholu jest dla organizmu bardzo niebezpieczny. W wątrobie etanol jest utleniany do aldehydu octowego, który jest wielokrotnie bardziej trujący niż sam alkohol. I to aldehyd uszkadza wątrobę. W skrajnych wypadkach w wątrobie mogą się pojawić komórki rakowe, znacznie częściej dochodzi do marskości wątroby czyli do zniszczenia struktury tego narządu. Bardzo często nadmiar alkoholu może doprowadzić do niewydolności wątroby. Zresztą aldehyd octowy niekorzystnie wpływa nie tylko na wątrobę, ale także na mózg. Nudności, bóle głowy i wymioty (czyli pozostałe objawy kaca) to efekt wpływu aldehydu na ludzki organizm a nie alkoholu.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Pijany mózg

Mówiąc o wpływie alkoholu na organizm człowieka najczęściej mamy jednak na myśli nie obniżenie poziomu cukru we krwi czy rujnowanie wątroby, tylko trudności w utrzymaniu równowagi, niewyraźne widzenie i mówienie oraz zwolniony czas reakcji. Skąd biorą się te objawy? Alkohol reaguje z substancjami, które w mózgu są odpowiedzialne za aktywność komórek nerwowych. Neurony stają się bardziej „ociężałe” nawet po wypiciu niewielkiej ilości alkoholu. Zmiany stężenia takich substancji jak kwas gamma-aminomasłowy, glutaminian czy serotonina nie tylko spowalniają działanie neuronów, ale zaburzają pracę niektórych części mózgu. Głównie w korze mózgowej, w której „znajduje się” odpowiedzialne zachowanie i logiczne myślenie. Mniejsza ilość serotoniny w podwzgórzu i w przysadce mózgowej skutkuje wylewnością i ogólnym rozluźnieniem. To dlatego pod wpływem alkoholu łatwiej zdradza się sekrety, łatwiej zaprzyjaźnia się z innymi. Krótko mówiąc znikają bariery. Alkohol wzmaga też pociąg seksualny, ale nadmiar alkoholu wpływa na takie rozluźnienie mięśni, że może skutkować problemami ze wzwodem.

Najbardziej niebezpieczne dla otoczenia są jednak konsekwencje działania alkoholu na móżdżek, tą część mózgu, która jest odpowiedzialna za koordynację ruchów i utrzymanie równowagi. To dlatego osoba pijana nie jest w stanie prosto chodzić, ma problemy np. z trafieniem kluczem do dziurki w zamku albo z dotknięciem palcem czubka swojego nosa. Osoba pijana za kierownicą samochodu nie potrafi omijać przeszkód, nie potrafi skoordynować swoich ruchów, nie jest w stanie prawidłowo ocenić odległości i szybkości. W największym skrócie jest całkowicie nieprzewidywalnym uczestnikiem ruchu na drodze. Alkohol zaburza także działanie rdzenia przedłużonego. Efektem tego – przy dużych dawkach alkoholu – jest ogólne otępienie, senność i spowolnienie reakcji.

Ile można wypić?

Organizm potrzebuje dużej ilości energii do oczyszczenia się z alkoholu. To dlatego jego wysoki poziom we krwi wywołuje dosyć szybko uczucie głodu. I tak na prawdę tylko dostarczenie dużej ilości węglowodanów ma wpływ na szybkość trawienia alkoholu. Chcąc szybko wytrzeźwieć, trzeba dużo jeść. Wszystkie inne metody, medykamenty, picie dużej ilości innych płynów czy robienie ćwiczeń fizycznych nie mają na trzeźwość żadnego wpływu.

A ile alkoholu można wypić, by móc normalnie funkcjonować? A co to znaczy normalnie? Nawet niewielka ilość alkoholu ma wpływ na nasze zachowanie, ma wpływ na pracę mózgu. Kwestią sporną pozostaje czy wpływ np. lampki wina jest zauważalny. Czy stanowi już jakiekolwiek zagrożenie. Są kraje w których prawo określa akceptowalny poziom alkoholu u kierowców na zero. Innymi słowy, np. na Węgrzech, na Słowacji czy w Czechach nie wolno mieć ani grama alkoholu we krwi. W Polsce (ale także w Szwecji i Norwegii) można prowadzić samochód mając 0,2 promila alkoholu we krwi. To – w porównaniu z innymi krajami europejskimi – dosyć restrykcyjna norma. Ale od 0,3 promila alkoholu we krwi zauważa się wpływające na zachowanie rozproszenie uwagi. Od 0,8 promila zauważalne jest już upośledzenie koordynacji ruchowo – wzrokowej. W przeważającej większości krajów Europy limit wynosi 0,5 promila, choć np. w Luksemburgu, Irlandii, Wielkiej Brytanii i na Malcie prawo dopuszcza prowadzenie samochodu z 0,8 promilem alkoholu we krwi.

A wracając na polskie drogi. Pomijając dyskusję nad tym czy polskie uregulowania prawne mają sens czy nie, ile można wypić, by nie przekroczyć limitu 0,2 promila alkoholu we krwi? Trudno o jednoznaczną odpowiedź. Wpływ alkoholu na organizm jest zależny od wielu czynników. Od stresu, zmęczenia czy różnego rodzaju dolegliwości zdrowotnych. Ale także od zażywanych leków czy od używek takich jak papierosy czy kawa. Lepiej więc nie ryzykować wsiadając za kierownicę nawet po jednym małym piwie. Lepiej odczekać. Przyjmuje się, że organizm potrzebuje godziny na pozbycie się 10 gramów czystego alkoholu. Tego w dużym (pół litrowym) piwie jest około 25 gramów. Krótko mówiąc, wsiadając za kierownicę 3 godziny po wypiciu kufla piwa, możemy być pewni, że alkomat policyjny wskaże poziom zero. I jeszcze jedno. Prawie 80 proc nietrzeźwych złapanych przez policję to kierowcy którzy pili alkohol poprzedniego dnia. Po wypiciu dużej ilości mocnego alkoholu trzeba dać organizmowi przynajmniej dobę na to, by całkowicie usunął alkohol z krwi. Tego procesu nie przyspieszy ani sen, ani zimny prysznic ani reklamowane środki farmaceutyczne.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Tekst ukazał się w tygodniku Gość Niedzielny
2 komentarze do Jak działa alkohol?

Szkodliwe szufladki

Wściekam się, że nauk ścisłych w szkole często uczy się w tak nieatrakcyjny sposób. Jaki jest tego efekt? Na hasło „jestem fizykiem” widzę w oczach wielu (zbyt wielu) młodych ludzi przerażenie pomieszane ze współczuciem. Już słyszę jak w myślach mówią „mój Boże, jakie on musiał mieć nieszczęśliwe życie”.

Wściekam się, że nauk ścisłych w szkole często uczy się w tak nieatrakcyjny sposób. Kogo to wina? Wszystkich po trochu. Ale nie o tym chcę pisać (a przynajmniej nie tym razem). Wiem za to jaki jest efekt. Otóż na hasło „jestem fizykiem” widzę w oczach wielu (zbyt wielu) młodych ludzi przerażenie pomieszane ze współczuciem. Już słyszę jak w myślach mówią „mój Boże, jakie on musiał mieć nieszczęśliwe życie”.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

W czym jest problem z nauczaniem przedmiotów ścisłych? Otóż z tym, że niewielu udaje się nimi zaciekawić. Dlaczego fizyka jest nudna? Bo ciągle wzory. A chemia? Bo nic nie kapuję z tych doświadczeń. To może biologia? A kogo interesują pantofelki?

Myślę, że jednym z głównych problemów… mój były szef, wybitny fizyk, który jako pierwszy człowiek na świecie wyprodukował kompletny atom antymaterii mawiał, że nie ma problemów, są tylko wyzwania… no to jeszcze raz. Myślę, że jednym z głównych wyzwań jakie stoją przed współczesną edukacją, jest zasypywanie szufladek, które sami stworzyliśmy w naszych mózgach, a teraz kopiujemy je do mózgów naszych dzieci. Chodzi mi o szufladki z napisem „fizyka”, „chemia”, „biologia”, „matematyka”. Małe, zainteresowane światem, dziecko nie rozróżnia dziedzin nauki. Dla niego jest nieistotne czy zmieniające kolor jesienne liście to domena biologii, chemii czy fizyki (prawdę mówiąc wszystkiego po trochu). Podobnie jak nie interesuje je czy spadającym z chmury deszczem powinien zajmować się fizyk czy chemik (podobnie jak poprzednio i jeden i drugi może o tym zjawisku sporo opowiedzieć). Dziecko interesuje znalezienie odpowiedzi, a nie to, kto jej udziela. Tymczasem my zamiast odpowiadać, zbyt wiele energii poświęcamy na to by dokładnie „rozdzielić kompetencje”.

Gdzie przebiega granica pomiędzy fizyką i chemią? A gdzie pomiędzy chemią i biologią? Czy cykle komórkowe to biologia czy chemia? A budowa materii? Atomy są chemiczne czy fizyczne? A potęgi? Powinien ich uczyć matematyk, fizyk czy chemik? W rzeczywistości uczy tego każdy na swój sposób, a uczeń – nie tylko ten, który miewa trudności z nauką – zastanawia się czy potęgi znane z matematyki, to te same o których słyszał na chemii czy fizyce? Na domiar złego, niektóre zjawiska zamiast pojawiać się równocześnie, na lekcjach np. chemii i fizyki wprowadzane są w sporych odstępach czasowych. To wszystko powoduje, że czym dłużej młody człowiek jest pod opieką systemu edukacji, tym większy ma problem z ogarnięciem nauk przyrodniczych jako całości. W pewnym sensie to powrót do dalekiej przeszłości, kiedy uważano, że prawa natury nie są uniwersalne. Że zasady, które rządzą zjawiskami przyrody nie wszędzie tak samo „działają”. Osobą, która dokonała przełomu, był Izaak Newton, lekarz, fizyk, filozof, ekonomista i teolog. Prawo powszechnego ciążenia jego autorstwa jako bodaj pierwsze pokazało, że „tutaj” czyli na Ziemi i „tam” czyli w kosmosie, obowiązują te same zasady. Że te same prawa opisują ruch planety wokół Słońca i ruch spadającego z drzewa jabłka. I pomyśleć, że 330 lat po opublikowaniu prac Newtona, nasz system edukacji wypuszcza „w świat” ludzi, którzy mają wątpliwości, czy gęstość oznaczana w chemii jako „d” a w fizyce jako ρ (ro), to ta sama wielkość.

Nasze wyobrażenie o świecie, nasza wiedza o nim jest weryfikowana praktycznie każdego dnia. Ale prawdziwe rewolucje zdarzają się stosunkowo rzadko. Kto tych rewolucji dokonuje? Czyimi rękami są one wprowadzane? Gdyby prześledzić historię nauki, dosyć szybko można dojść do wniosku, że rewolucje robią ci, którzy nie zostali zaszufladkowani, ci którzy potrafią się wznieść ponad tradycyjny – sztuczny i moim zdaniem mocno krzywdzący młodego człowieka – podział na przedmioty. Tak było nie tylko setki lat temu, kiedy jedna osoba studiowała tak różne (z dzisiejszego punktu widzenia) kierunki jak medycyna, filozofia, nauki przyrodnicze, teologia i prawo (Kopernik, Newton czy Kant), ale także w czasach nam bliższych (Hubble, Lemaitre, Rubin). Prawdziwych odkryć, prawdziwych rewolucji w nauce dokonują ci, którzy swoją wiedzą ogarniają wiele półek w bibliotece, a nie ci, którzy znają tylko kilka książek na wyrywki. Choćby znali je na pamięć. No bo na dobrą sprawę, czy jest sens czytać książki na wyrywki, czasami nie po kolei? Wydaje mi się, ba! jestem tego pewny, że opowiadana w książkach historia nabiera rumieńców, wciąga i inspiruje dopiero wtedy gdy jest opowiedziana w całości.

male wielkie odkrycia 1500px 3d

„Małe wielkie odkrycia – najważniejsze wynalazki, które odmieniły świat”. Steven Johnson

A skoro już piszę o książkach i półkach. Do przemyśleń nad systemem edukacji nakłoniła mnie lektura pewnej książki. Nakładem wydawnictwa Sine Qua Non właśnie ukazały się „Małe wielkie odkrycia – najważniejsze wynalazki, które odmieniły świat”. Bardzo żałuję, że w polskiej szkole w ten sposób nie uczy się nauk ścisłych. Jasne, na fizyce czy na chemii muszą być wzory i zadania z treścią, ale szkoda, że bardzo często przysypani rachunkami, zapominamy co tak właściwie liczymy. Steven Johnson, autor „Małe wielkie odkrycia…” napisał książkę, która pokazuje historię rozwoju naszej cywilizacji. Pokazuje zawiłą, ale równocześnie pasjonującą drogę jaką przechodzili ludzie ciekawi i uparci. Nie opisuje pojedynczych wynalazków, nie dzieli ich na te dokonane przez fizyków, chemików i biologów. Pokazuje historię dochodzenia do odkryć. Do wybudowania teleskopu przyczyniło się oblężenie, setki lat wcześniej, Konstantynopola. Do skonstruowania pierwszego mikroskopu, wynalezienie dużo wcześniej prasy drukarskiej. Ta książka jest pełna, tak zaskakujących „związków”. Nie będę więcej zdradzał. Powiem tylko, że te największe odkrycia nie byłyby możliwe, bez tych małych. Małych wcale nie znaczy banalnych i nudnych. Przeciwnie. Małych, znaczy tajemniczych, nieznanych i nieoczywistych.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 
7 komentarzy do Szkodliwe szufladki

Technologia demencji z pomocą

To, że nasz świat się starzeje wiedzą wszyscy. Ale niewiele osób zdaje sobie sprawę z konsekwencji z jakimi się to wiąże. Przed ogromnymi wyzwaniami stoją służba zdrowia i publiczne usługi.  Ale także system ubezpieczeń społecznych i… architektura.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Każdy chyba intuicyjnie czuje, czym jest tzw. inteligentny dom (mieszkanie). To miejsce – w największym skrócie – które dostosowuje się do człowieka. I to na każdym z możliwych poziomów. Do człowieka i dla człowieka. Inteligentne domy wiążą się z tzw. internetem rzeczy i w przyszłości będą czymś oczywistym nie tylko dla osób starszych. Tyle tylko, że tak jak osoba w pełni sił obejdzie się bez udogodnień w swoim mieszkaniu, tak osoba starsza, z ograniczeniami fizycznymi a czasami także psychicznymi, może mieć z tym problem.

Kilka lat temu pracujący w brytyjskim Uniwersytecie Bath uczeni zabrali się za urządzanie wnętrz. Tym razem zamiast architektów czy dekoratorów pierwsze skrzypce grali jednak inżynierowie i informatycy. I tak powstało być może pierwsze mieszkanie nafaszerowane nowoczesnymi technologiami, które zostało zaprojektowane specjalnie dla osób, które z powodu demencji czy urazów cierpią na zaniki pamięci.

Osoba cierpiąca na zaburzenia pamięci czy ograniczoną zdolność do zapamiętywania informacji jest uzależniona od innych. Ktoś musi przypilnować czy podopieczny sam nie wychodzi z domu (często nie zdając sobie sprawy dokąd się wybiera), sprawdzić czy zamknął okna (szczególnie, gdy na zewnątrz jest zimno) lub czy zgasił światła, gdy idzie spać. Ktoś musi także skontrolować czy wyłączył kuchenkę po podgrzaniu obiadu albo zobaczyć czy nie odkręcił wody nad umywalką w łazience, a potem o tym zapomniał. Te, czy też inne czynności nie są zwykle uciążliwe, ale wymagają przez cały czas obecności innych. Nie zawsze jest to jednak możliwe. Często w takich przypadkach – dla własnego bezpieczeństwa – osoby z zaburzeniami pamięci wysyłane są do domów opieki lub domów spokojnej starości. Tam całodobową opiekę zapewnia im profesjonalna kadra. Ale czy jest ona rzeczywiście zawsze potrzebna ? Na miejsca w tego typu ośrodkach trzeba czasami długo czekać, a biorąc pod uwagę tempo starzenia się społeczeństw, w przyszłości czas oczekiwania może być jeszcze dłuższy. Jest jeszcze coś. Nie ulega wątpliwości, że zmiana miejsca zamieszkania, a przez to także środowiska, czy kręgu znajomych wpływa bardzo niekorzystnie na osoby starsze.

Dlatego powstało pierwsze na świecie mieszkanie przyjazne i bezpieczne dla osób z zaburzeniami pamięci. Zainstalowany w nim system składa się z sensorów, które połączone są w sieć z urządzeniami najczęściej używanymi w gospodarstwie domowym. Do sieci podłączone są także wszystkie włączniki światła oraz urządzenia „mówiące” i wyświetlające komunikaty. Poza tym czujniki umieszczone są w drzwiach wyjściowych i wszystkich oknach. Sercem systemu jest komputer, który analizuje wszystkie dostarczane mu dane. To on decyduje, czy zwrócić się do właściciela mieszkania, czy – szczególnie wtedy gdy kolejne komunikaty nie przynosiły skutku – zadzwonić po pomoc.

Konstruktorzy systemu podkreślają, że dla osób starszych czy z różnego typu urazami równie ważne jak rzeczywista opieka jest poczucie bezpieczeństwa. Pewność, że w razie wypadku odpowiednie służby zostaną automatycznie powiadomione i przyjdą z pomocą. Wielką zaletą zaprojektowanego systemu jest to, że w przyszłości będzie go można zamontować w całości lub w częściach w już istniejących mieszkaniach. Dotychczasowe próby stworzenia „inteligentnych”, naszpikowanych elektroniką domów wiązały się z koniecznością budowy ich od samych niemalże fundamentów. Teraz jest inaczej. Osoba mająca coraz większe problemy z koncentracją będzie mogła zainstalować sobie komponenty systemu w swoim własnym mieszkaniu. Nie będzie się także musiała obawiać generalnego remontu ścian czy okien. Wszystkie urządzenia działają w technologii bezprzewodowej i przekuwanie się przez mury w czasie ich instalacji nie jest konieczne.

Co w takim razie potrafi inteligentne mieszkanie dla osób starszych ? Jednym z największych zagrożeń dla kogoś kto ma kłopoty z koncentracją jest zostawienie włączonej kuchenki elektrycznej lub gazowej. Jeżeli czujniki wykryją taką sytuację zasygnalizują głosowo, że powinna ona zostać wyłączona. Jeżeli pierwsze ostrzeżenie nic nie pomoże, system je powtórzy. Jeżeli nawet to nie da odpowiedniego rezultatu, kuchenka zostanie automatycznie wyłączona. To samo stanie się, gdy włączą się czujniki dymu zainstalowane nad kuchenką. W tym przypadku komputer natychmiast zadzwoni do odpowiednich służb i powiadomi je o zdarzeniu. Cały czas – nawet po wyłączeniu kuchenki – system sprawdza jaka jest temperatura grzejników. Tak długo jak są one gorące, na zainstalowanym nad kuchenką ekranie wyświetlane będzie ostrzeżenie o ryzyku oparzenia. Komputer główny cały czas „wie”, w którym pokoju przebywa właściciel mieszkania. Jeżeli w środku nocy wyjdzie z łóżka i będzie zmierzał w kierunku łazienki, automatycznie zapali się w niej światło. Jeżeli po skorzystaniu z toalety osoba wróci do łóżka, a zapomni zgasić światło – to, po kilku minutach wyłączy się ono samo. Podobnie jak samoczynnie zakręci się kurek z wodą, gdy umywalka czy wanna zostanie w całości napełniona. Gdy w nocy właściciel postanowi pospacerować po swoim mieszkaniu, w pokojach, do których wejdzie, automatycznie będą się włączały światła, a w  tych, z których wyjdzie wyłączały. Oczywiście światła będą też mogły być włączane i wyłączane „ręcznie”. Jeżeli „nocne zwiedzanie” będzie trwało zbyt długo, system przez zamontowane w mieszkaniu głośniki zwróci właścicielowi uwagę, że czas iść już spać. Jeżeli ani ten, ani powtórzony po kilku chwilach komunikat nie odniesie skutku, komputer skontaktuje się telefonicznie z opiekunem. Tak samo zresztą zareaguje, gdy podopieczny o nietypowych (zadanych wcześniej) godzinach otworzy drzwi wejściowe do swojego mieszkania i będzie miał zamiar wyjść na zewnątrz. System poprosi o wejście z powrotem, a jeżeli to nie pomoże, skontaktuje się  z opiekunem.

System można rozbudowywać według potrzeb osoby z niego korzystającej. Komputer będzie przypominał o zażyciu lekarstw zalecanych przez lekarza. O inteligentnym domu możemy mówić wtedy, gdy wszystko co automatyczne, połączone jest w zintegrowany system zarządzania i nadzoru. Gdy właściciel słucha jakiejś muzyki szczególnie często, system wie, że to jego ulubiona. Oczywiście ulubioną (nawet w zależności od pory dnia) można zdefiniować samemu. System też wie, że właściciel lubi kawę rano, ale po południu herbatę. To można także zaprogramować, albo poczekać, aż odpowiedni program sam się tego nauczy. Wiele pomysłów zaprojektowanych z myślą o osobach starszych – nie mam co do tego żadnych wątpliwości – znajdzie powszechne zastosowanie. Jak chociażby system, który z chwilą wyjścia domownika, automatycznie zamknie główny zawód wody i gazu, wyłączy wszystkie zbędne obwody elektryczne i uzbroi alarm. To wszystko może stać się wtedy gdy system czujników sam wykryje, że w domu już nikogo nie ma, albo wtedy gdy domownik na progu zawoła „wychodzę !”. W inteligentnym domu, głosem będzie można załatwić wszystko. Choć to wydaje się być udogodnienie dla wszystkich, dla starszych będzie to szczególnie istotne. Seniorzy często mają kłopoty ze wzrokiem i mniej precyzyjne palce niż osoby młode. Włączanie opcji na panelu czy klawiaturze może być dla nich kłopotliwe.

Co ciekawe, inteligentne domy są nie tylko bardziej przyjazne i bezpieczniejsze, ale także dużo oszczędniejsze w utrzymaniu. Oszczędzają wodę, energię elektryczną, gaz, ale przede wszystkim czas właścicieli. A to znaczy, że są odpowiedzią nie tylko na wyzwanie związane z średnim wiekiem społeczeństw uprzemysłowionych, ale także na wyzwanie związane z ochroną środowiska i oszczędzaniem energii.  

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.
1 komentarz do Technologia demencji z pomocą

Myśląca maszyna

Na samą myśl o tym, że komputer mógłby myśleć, myślącemu człowiekowi włosy stają dęba. A może wystarczy nauczyć maszynę korzystania z naszych myśli?

Myślenie maszyn to temat, który wywołuje sporo emocji. Czy zbudujemy kiedykolwiek sztuczny mózg? Czy maszyny (komputery, programy) mają świadomość? A może w przyszłości nas zastąpią? Cóż, zastępują już dzisiaj. I dobrze, że zastępują, w końcu po to je budujemy. Czy myślą? Nie da się odpowiedzieć na to pytanie, zanim nie sprecyzujemy dokładnie co to znaczy „myśleć”. Jeżeli oznacza „podejmować decyzje”, to tak, komputery potrafią to robić. Potrafią też się uczyć i wyciągać wnioski z przeszłości. Nie potrafią robić rzeczy abstrakcyjnych. I przede wszystkim nie mają poczucia osobowości, nie mają poczucia swojej odrębności i swoich własnych celów. Owszem maszyny robią wiele rzeczy celowych, ale realizują nie swoje cele, tylko cele konstruktora czy programisty.

Deep brain stimulator.

(credit:  Asylum Entertainment)

Deep brain stimulator.

(credit: Asylum Entertainment)

Łowienie sygnałów

Samoświadomość czy kreatywność wydają się być barierą, która jeszcze długo nie zostanie złamana. To czy powinna być złamana, to zupełnie inny temat. Ale być może nie ma potrzeby na siłę nadawać maszynom cech ludzkich mózgów, może wystarczy w jakiś sposób je z naszymi mózgami zintegrować? Różnice pomiędzy tym, jak działa nasz mózg i „mózg” maszyny są spore. Może warto się zastanowić nad tym, czy maszyna nie mogłaby w pewnym sensie skorzystać z tego co MY mamy w głowie. Ten sam problem można postawić inaczej. Czy nasz mózg jest w stanie dogadać się bezpośrednio z maszyną? Czy jest bezpośrednio w stanie przekazywać jej informacje albo nią sterować?

Słowo „bezpośrednio” ma tutaj kluczowe znaczenie. Nasze mózgi dogadują się z komputerem, ale pomiędzy umysłem a procesorem w maszynie jest cała masa stopni pośrednich. Np. palce piszącego na klawiaturze, sama klawiatura. W końcu język, w którym piszemy komendy (albo tekst). Te stopnie pośrednie powodują, że czas pomiędzy myślą, która zakwita nam w mózgu a jej „materializacją” bywa długi. Każdy stopień pośredni jest potencjalnym miejscem pojawienia się błędu. W końcu ile razy wpisywana przez klawiaturę komenda czy tekst zawierał literówki? Jest jeszcze coś. Nie każdy fizycznie jest w stanie obsługiwać komputer czy jakiekolwiek inne urządzenie elektroniczne. Zwłaszcza dla takich ludzi stworzono interfejs mózg – komputer (IBC). Urządzenie, które pozwala „zsynchronizować” mózg z komputerem, pozwalające wydawać komendy urządzeniom elektronicznym za pomocą fal mózgowych. Dzisiaj z IBC korzystają nie tylko niepełnosprawni, ale także gracze komputerowi. W przyszłości być może będzie to standardowy sposób obsługi elektroniki.

Jak to działa? Komórki nerwowe w mózgu człowieka porozumiewają się pomiędzy sobą poprzez przesyłanie impulsów elektrycznych. Te można z zewnątrz, czyli z powierzchni czaszki, rejestrować. W ostatnich latach nauczyliśmy się je także interpretować. To istne szukanie igły w stogu siana. Mózg każdej sekundy przetwarza miliony różnych informacji, przesyła miliony impulsów do mięśni rozlokowanych w całym ciele. Każdy taki sygnał pozostawia „ślad”, który można podsłuchać.

Neural net firing reversed.

(credit:  Asylum Entertainment)

Neural net firing reversed.

(credit: Asylum Entertainment)

Czujnik w okularach

Nie powiem, że potrafimy podsłuchać wszystko. To byłaby nieprawda. Mówiąc szczerze, jesteśmy dopiero na samym początku drogi. W przypadku IBC bardzo pomocna jest  świadomość użytkownika (pacjenta?) korzystającego z interfejsu. Człowiek ma bowiem zdolności do takiego aktywizowania mózgu, by sygnały z tym związane, można było wyraźniej „usłyszeć” na powierzchni czaszki. Dzięki temu, osoby sparaliżowane, myślami są w stanie poruszać mechanicznymi nogami (czyli tzw. egzoszkieletem) albo wózkiem inwalidzkim. W ten sam sposób człowiek ze sprawnie działającym mózgiem jest w stanie komunikować się z otoczeniem chociażby poprzez pisanie na ekranie, nawet gdy jest całkowicie sparaliżowany. Myśli o literach, a te wyświetlają się na odpowiednim urządzeniu.  W podobny sposób, w przyszłości być może będzie wyglądało sterowanie telefonem komórkowym czy jakimkolwiek innym urządzeniem. Pewną trudnością jest to, że – przynajmniej dzisiaj – po to, by wspomniane impulsy można było zarejestrować, do skóry głowy muszą być przyłożone elektrody. Albo korzystający z interfejsu człowiek musi mieć ubrany specjalny czepek z czujnikami. Ale w przyszłości być może wystarczą czujniki w okularach? Okularach, w których zainstalowana będzie kamera, a na szkłach wyświetlane będą dodatkowe informacje. Takie okulary już są i nazywają się GoogleGlass.

Złożony i skomplikowany

Interfejs mózg – komputer odbiera sygnały z powierzchni skóry, rejestruje je i interpretuje. Czy możliwe jest przesyłanie informacji w odwrotną stronę, czyli z jakiegoś urządzenia do mózgu? Na razie tego nie potrafimy, ale nie mam wątpliwości, że będziemy próbowali się tego nauczyć (znów, czy powinniśmy to robić, to zupełnie inny temat). To znacznie bardziej skomplikowane niż sczytywanie potencjałów elektrycznych z powierzchni czaszki. W którymś momencie tę barierę może przekroczymy i wtedy będziemy mieli dostęp do nieograniczonej ilości informacji nie poprzez urządzenia dodatkowe takie jak komputery, tablety czy smartfony. Wtedy do tych informacji będzie miał dostęp bezpośrednio nasz mózg. Na to jednak zbyt szybko się nie zanosi. Nie z powodu samej elektroniki, raczej z powodu naszego mózgu. Panuje dość powszechna zgoda, że to najbardziej skomplikowany i złożony system jaki znamy. Nie tylko na Ziemi, ale w ogóle. Choć od lat na badania mózgu przeznacza się ogromne kwoty pieniędzy, choć w ostatnich latach poczyniliśmy ogromne postępy, wciąż niewiele wiemy o CZYMŚ co waży pomiędzy 1,2 a 1,4 kg

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Myśląca maszyna

Fizyka tłumu

Zatłoczone miejsca mogą być bardzo niebezpieczne. Nie, nie z powodu kieszonkowców, tylko z powodu trudnych do opanowania reakcji tłumu. Duża grupa ludzi w określonych sytuacjach zachowuje się jak „jeden organizm” a nie jak grupa organizmów niezależnych.

Dwa dni temu, w Bydgoszczy, w czasie studenckiej imprezy wybuchła panika. Jedna osoba zginęła, a kilka kolejnych zostało rannych. Do dramatu doszło nie na dużej sali, tylko w wąskim przejściu. Kilkanaście dni wcześniej, w czasie hadżu – pielgrzymki wyznawców Allaha do Mekki, w tłumie zginęło około 500 osób. W styczniu 1990 roku, w tym samym miejscu zadeptano ponad 1500 ludzi. W czym jest problem? Ludzie w swoim zachowaniu podobni są do zwierząt, np. mrówek, ryb w ławicy czy ptaków w kluczu. Poruszają się w sposób uporządkowany i określony. Do czasu. Gdy wybucha panika, uporządkowanie ustępuje chaosowi. Wbrew pozorom ten chaos można ujarzmić… za pomocą równań matematycznych.

Szybko ale bezpiecznie

Z pozoru sytuacje takie jak w saudyjskiej Mekce zdarzają się rzadko. I całe szczęście. Ale nie chodzi tylko o tragedie w których giną ludzie. Gdy trzeba ewakuować centrum handlowe, liczy się każda chwila. Jak zaprojektować wyjścia ewakuacyjne? Zrobić jedno duże, czy kilka mniejszych? A kibice piłkarscy na dużym stadionie? Po skończonym meczu tysiące ludzi chce jak najszybciej dostać się do swoich samochodów czy do środków komunikacji publicznej. Jak oznaczyć ciągi komunikacyjne? Wypuszczać ludzi partiami czy po prostu otworzyć drzwi i „niech sami sobie radzą”. Problem jest ważny nawet dla linii lotniczych. I nie tylko w sytuacjach zagrożenia życia. Każda minuta postoju na płycie lotniska kosztuje. Jak pasażerów szybko „usadzić” na miejscu i co zrobić by po wylądowaniu jak najszybciej – bezpiecznie – opuścili oni samolot? Pytań jest naprawdę wiele. Tylko dlaczego mają na nie odpowiadać fizycy? Ano dlatego, że duża grupa ludzi podobna jest do płynu. Ten w niektórych sytuacjach porusza się przewidywalnie i wtedy mówimy o przepływie laminarnym, ale czasami ten porządek zamienia się w chaos i wtedy mówimy o przepływie turbulentnym. Fizycy tymi przepływami zajmują się od dawna, bo to od nich zależy np. opór z jakim musi poradzić sobie jadący autostradą samochód, bo to od nich zależy sprawność silnika odrzutowego samolotu. Od niedawna wiadomo jednak, że te same równania, które opisują mechanikę płynów, można stosować do dużych grup ludzi.

Mrówki też ludzie

Mrówki zwykle wybierają drogę… którą chodzi większość. „Domyślają się” – i słusznie – że kierunek który wybrało więcej mrówek jest z jakiś powodów bardziej atrakcyjny. I tak tworzą się tzw. mikrostużki, czyli drogi, które z jakichś powodów są przez mrówki preferowane. Podobnie zachowują się ryby w ławicy. I ludzie na chodniku. Nawet w dużym tłumie, nie poruszamy się całkowicie losowo i chaotycznie. Często, nawet nieświadomie, wybieramy drogę, którą idzie przed nami osoba poruszająca się w podobnym tempie co my. Gdy ktoś idzie wolniej, albo szybciej nie zwracamy na niego uwagi. Nasz mózg podświadomie śledzi tylko tych, którzy idą w naszym tempie. My sami też możemy być dla kogoś „przewodnikiem”, a ten ktoś dla kolejnej osoby. I już się tworzą mikrostrużki. To dlatego na szerokim trakcie ludzie idący w jednym kierunku jakoś automatycznie trzymają się jednej strony. Tylko co jakiś czas ktoś próbuje przebić się ”pod prąd”. Podstawowa i święta zasada jest taka, żeby tak projektować trakty, by ruch na nich mógł być płynny. I tak, lepiej, gdyby korytarz skręcał łukiem niż pod kątem prostym. Lepiej też by na skrzyżowaniu traktów było coś co trzeba okrążyć (fontanna, rzeźba,…), bo to zwiększa płynność ruchu. Niestety, te z pozoru proste zasady, gdy wybucha panika przestają obowiązywać i pojawia się chaos. Podobnie zresztą jak u mrówek, ryb w ławicy, a nawet u ptaków w stadzie. Za wszelką cenę nie można do tego dopuścić. Nie ma co liczyć na rozwagę czy trzymanie nerwów na wodzy. Ludzie w panice przestają zdawać sobie sprawę z tego co robią. Choć nie sposób przewidzieć, co zrobi konkretna osoba, naukowcy potrafią przewidzieć co będzie robiła duża grupa ludzi. Do tego zatrudniają największe komputery świata i… setki wolontariuszy. Ci, czasami sa narażeni na niebezpieczeństwo. W czasie próbnych ewakuacji jakie prowadzono w czasie budowy samolotu Airbus 380, z 900 ochotników, 30 zostało rannych w tym jedna osoba ciężko. Z międzynarodowych norm wynika, że samolot powinny być zaprojektowany w ten sposób, by ewakuacja wszystkich pasażerów nie trwała dłużej niż 90 sekund.

Dym i kamery

Gdy z końcówki palącego się knota świecy ulatnia się dym, początkowo jego strużka unosi się pionowo do góry. Można wręcz dostrzec równoległe do siebie pasma. To tzw. przepływ laminarny. Po kilkunastu centymetrach dym zaczyna jednak tworzyć zawirowania. Uporządkowana jeszcze przed chwilą stróżka staje się chaotyczna i nieprzewidywalna. Tak wygląda przepływ turbulentny. Naukowcy z Uniwersytetu w Dreźnie analizujący przypadki w których tłum zaczyna tratować ludzi, zauważyli, że zagrożenie pojawia się wtedy, gdy ludzie zaczynają poruszać się jak ciecz albo gaz w czasie przepływu turbulentnego. Tak długo, jak „przepływ” ludzi jest laminarny – nie ma problemu. Turbulentny, czyli chaotyczny przepływ pojawia się gdy wybucha panika, ale sam może być źródłem paniki. W Mekce droga pielgrzymów wiodła przez most Jamarat, który jest węższy niż droga do niego prowadząca. To zwężenie w przeszłości powodowało, że ludzie zaczynali poruszać się turbulentnie. Chaos powodował wybuch paniki, a panika – jeszcze większy chaos. Po sugestiach jakie niemieccy fizycy wysłali władzom Arabii Saudyjskiej, drogę pielgrzymów nieco przebudowano.

Co jeszcze może mieć znaczenie? Na przykład wyrwa w drodze, w zasadzie jakakolwiek przeszkoda. Ale także kłótnia czy bijatyka dwóch idących obok siebie osób. Schody, krawężnik, nawet moment w którym pieszy schyla się, by podnieść coś, co wypadło mu z ręki. Niemieccy badacze sugerują więc, by nad miejscami gdzie poruszają się duże grupy ludzi umieszczać kamery, które automatycznie będą wykrywały w których miejscach ruch zaczyna być turbulentny. Zanim dojdzie do tragedii (przecież z tyłu napierają kolejne masy ludzi), odpowiednie służby mogą zareagować. Mają na to od kilku, do kilkunastu minut.

Wąsko źle, szeroko też niedobrze

Ślepe stosowanie zasad jakie rządzą mechaniką płynów (analogia do dymu papierosowego) jest jednak skuteczne tylko do pewnego stopnia. Ludzie ze sobą współdziałają, oddziałują na siebie znacznie bardziej niż cząsteczki gazu czy płynu. W końcu widzą, co robią inni. Gdy wziąć pod uwagę to wszystko okazuje się, że pomieszczenie (pokój, stadion czy pokład samolotu) najszybciej pustoszeje, gdy … nikt się nie śpieszy. Tylko wtedy wyjście nie staje się wąskim gardłem. Gdy wzrasta prędkość ludzi idących ku wyjściu, drzwi „korkują się”, a ludzie opuszczają pomieszczenie grupkami. To spowalnia opuszczanie zagrożonego terenu. Dlatego lepiej jest projektować więcej węższych wyjść niż mniej szerszych. Ale tutaj – uwaga – sprawa jest bardziej złożona. Pomijając szczegóły (które choć bardzo ciekawe, zajęłyby tutaj zbyt dużo miejsca), okazuje się, że gdy ludzie współpracują z sobą (np. znajomi z pracy) szybciej wyjdą wąskim wyjściem. Gdy raczej konkurują o to kto szybciej się wydostanie, lepsze są wyjścia szerokie (chociażby miałoby ich być mniej). Gdy wyjścia są szerokie, dobrze przed nimi stawiać kolumny. Z symulacji komputerowych wynika, że w sytuacji krytycznej przed wyjściem rzadziej tworzą się wtedy kolejki, a w efekcie „przepływ” staje się bardziej laminarny. Z kolei przed wąskimi wyjściami dobrze jest zamontować równoległe  barierki (takie jak przy wejściu do metra), które spowodują, że już przed wejściem, ludzie będą szli w uporządkowanym szyku.

Kilka lat temu niemiecki rząd uruchomił projekt Hermes, w ramach którego powstał system kierujący tłumem. Kamery obserwują prędkość ludzi, a komputery za pomocą znaków świetlnych i dźwiękowych decydują którędy tłum prowadzić. Na stadionie czy w czasie dużej wystawy gdy trzeba zarządzić ewakuację, któreś z wyjść może być zablokowane (albo za bardzo oblegane). Wtedy kierowanie się w jego kierunku jest bardziej niebezpieczne niż nawet dołożenie drogi i udanie się do innego wyjścia. Dawanie ludziom jasnych sygnałów co mają robić w czasie zagrożenia jest niezwykle istotne. Zauważono (zresztą u zwierząt występuje ten sam mechanizm), że w sytuacjach kryzysowych podążamy raczej za tłumem, w grupie czujemy się bezpieczniej. Bez wyraźnej informacji duża grupa może przemieszczać się w kierunku jednego wyjścia („tam idą wszyscy, widocznie ktoś zna najlepszą drogę”), podczas gdy inne będą puste.

Dzisiaj jeszcze zbyt wcześnie by dogłębnie przeanalizować to co dwa dni temu stało się w Bydgoszczy. Przejście było wąskie, ludzi było dużo, okna były pozamykane. Brak tlenu przyspiesza podejmowanie irracjonalnych decyzji. Niektórzy świadkowie twierdzą, że ktoś w przejściu rozpylił gaz. Być może po to by uspokoić ludzi. Jeżeli tak było rzeczywiście, tylko pogorszył sytuację. Wyjaśnienie przyniesie śledztwo.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

4 komentarze do Fizyka tłumu

Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

Po „Kosmosie” przyszedł czas na „Człowieka” , czyli drugą część mojej trylogii. Opowieść o tym skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

rozkładówka - wstęp

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Organizm człowieka jest „kosmicznie” skomplikowany i właśnie dlatego jest tak niezwykły. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

rozkładówka_Konarzewski

Kiedyś przeprowadzałem wywiad z neuropsychologiem. Zapytałem go, ile tak właściwie wiemy o ludzkim mózgu. Intuicja podpowiadała mi, że niewiele. Zakładałem, że profesor odpowie, że poznaliśmy nie więcej niż kilka procent wszystkich zagadnień związanych z mózgiem. A tymczasem odpowiedział: „gdyby zapytał mnie pan o to kilka lat temu, powiedziałbym, że nie więcej niż 10 procent, ale dzisiaj, po uruchomieniu kilku dużych międzynarodowych programów dotyczących badania mózgu, po ogromnej liczbie publikacji, jakie pojawiły się w ostatnich latach, twierdzę, że wiemy nie więcej niż 3-4 procent”. Ta odpowiedź jest zaskakująca tylko pozornie. W nauce bardzo często wraz ze wzrostem wiedzy, wzrasta także świadomość naszej niewiedzy. Naukowców i pasjonatów na całym świecie napędza nie to co jest znane, tylko właśnie to, co jest tajemnicą. Jako dziennikarz naukowy przyglądam się tym tajemnicom i czuję podekscytowanie. Ta książka jest pełna moich ekscytacji i fascynacji oraz prób znalezienia odpowiedzi na nurtujące mnie pytania.

rozkładówka_kaczmarzyk

Książka podzielona została podzielona na trzy części. W każdej z nich, oprócz mojego tekstu, znajduje się fascynujący wywiad z naukowcem. Rozmawiam o przeszłości, teraźniejszości i przyszłości człowieka. W wywiadach staram się uzyskać odpowiedzi na tytułowe pytania: skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Czy je uzyskuję? O tym każdy Czytelnik przekona się sam.

rozkładówka - tadeusiewicz

Człowiek to drugi tom trylogii, którą wymyśliłem w ubiegłym roku. Pierwszy tom, który ukazał się w 2014 roku był zatytułowany Kosmos. Opisuję w nim wszystko to, co jest większe od człowieka. Od Wszechświata począwszy, poprzez galaktyki i układy planetarne, a na planetach, w tym planecie Ziemi, skończywszy. Trzeci tom trylogii – Mikrokosmos – ukaże się w przyszłym roku.

Książka Człowiek została wydana nakładem Grupy Wydawniczej Foksal sp. z o.o.

Zapraszam do lektury

1 komentarz do Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

Złapali kwant !!!

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Tak, światło składa się z cząstek. A właściwie sprawa jest bardziej złożona. Światło ma cechy fali (podobnej do tej na wodzie), ale wykazuje też cechy korpuskularne. W skrócie mówiąc, jest i falą, i cząstką. Trudno to odnieść do naszej rzeczywistości, bo w makroświecie cechy fali i cząstki wykluczają się. W świecie kwantów nic się nie wyklucza.

Quantum paparazzi spying identical photon pairs

„Łapacze fotonów”, młodzi fizycy z UW, na tym zdjęciu zachowują się jak fotony. Są w dwóch miejscach równocześnie. Obok układu pomiarowego Radosław Chrapkiewicz (po prawej) oraz Michał Jachura (stojący za nim) .

W zasadzie proste 

Cząstki światła nazywają się kwantami. Nie mają masy spoczynkowej, nie da się ich zatrzymać i przyjrzeć im się „na spokojnie”. Przeciwnie, pędzą z prędkościami, które trudno sobie nawet wyobrazić. 300 tys. kilometrów na sekundę! Ile to jest? Odległość między Zakopanem i Trójmiastem (prawie 700 km) światło pokonuje w tysięczne części sekundy. Jak złapać, jak sfotografować coś, co porusza się z taką prędkością? – Układ, który zastosowaliśmy do naszych pomiarów, jest dość złożony, ale sama idea nie jest skomplikowana – powiedział mi Michał Jachura z Uniwersytetu Warszawskiego. – Źródłem fotonów jest fioletowy laser. Padają one na urządzenie, w którym z jednego fotonu powstaje jeden elektron. Następnym elementem jest wzmacniacz powielający ten jeden elektron. Tak powstaje kilka milionów elektronów, które następnie padają na płytkę z fosforu, gdzie powodują błysk światła. Ten błysk rejestrujemy specjalną kamerą – mówi drugi z młodych badaczy, Radosław Chrapkiewicz. – I to w zasadzie wszystko – dodaje. Niektóre elementy układu, w którym udało się złapać fotony, np. wzmacniacz obrazu, to urządzenia wykorzystujące technologię wojskową. Samo sfotografowanie pojedynczej cząstki światła to jednak nie było topowe osiągnięcie Michała i Radka. Im udało się zobaczyć moment, w którym fotony się parowały. Ale zanim o tym, warto powiedzieć trochę o samych fotonach.

Światło wprost ze światłowodu

Światło wprost ze światłowodu. Obiektyw aparatu Radka Chrapkiewicza był skierowany dokładnie w kierunku światłowodu (wyjścia) z lasera femtosekundowego. Ten laser emituje bardzo krótkie błyski światła, których długość nie przekracza 100 fs (femtosekund). Femtosekunda to jedna bilionowa część sekundy. W czasie jednej femtosekundy światło pokonuje drogę sto razy krótszą niż grubość ludzkiego włosa!

Jaki kształt? Jaki kolor?

Fotografia kojarzy nam się z odwzorowywaniem rzeczywistości. Skoro foton dał się sfotografować, można chyba zapytać, jak on wygląda. Zacznijmy od kształtu. Da się go określić? – W jednym pomiarze nie, ale robiąc wiele pomiarów, wiele zdjęć, udaje się to zrobić, choć od razu trzeba powiedzieć, że kształt fotonu nie jest stały. Może się różnić w zależności od tego w jakim otoczeniu się znajduje – tłumaczy Michał. – W naszej aparaturze obserwowaliśmy np. fotony o wydłużonych kształtach, takich trochę jak ołówek, ale udawało nam się także obserwować fotony rozseparowane, czyli takie, w których jeden foton był rozdzielony na dwie części. I to części, które znajdują się od siebie w odległości nawet centymetra – dodaje Radek. A kolor? Tutaj sprawa zaczyna się komplikować jeszcze bardziej. – Foton ma trzy cechy, które nazywamy stopniami swobody – opowiada Michał Jachura.

– Pierwszy to struktura w przestrzeni, czyli w pewnym sensie kształt. Drugi stopień swobody – spektralny – to innymi słowy kolor. Fotony mogą być czerwone, niebieskie, ale możemy mieć fotony w tak zwanej superpozycji, np. fotony białe, składające się z wielu barw dla których określony kolor ustala się dopiero w momencie pomiaru. Ten sam foton mierzony wielokrotnie może mieć różne kolory. Ostatni stopień swobody to polaryzacja, tzn. kierunek, w jakim foton drga. Jeżeli dwa fotony mają identyczne trzy stopnie swobody, nie ma żadnej możliwości, by odróżnić je od siebie – kończy Michał Jachura. Zatem wróćmy do osiągnięcia dwóch doktorantów. Fotografowali oni fotony, które dobierały się w pary. W czasie tego procesu zauważyli, że dwa różne fotony skazane są na samotność. Nawet gdy znajdą się obok siebie, „nie widzą” się i zwykle nie dobierają się w pary. Sytuacja wygląda zupełnie inaczej, gdy fotony są identyczne, to znaczy, gdy wszystkie trzy stopnie swobody dwóch cząstek są takie same. Wtedy powstają pary, które na dodatek są wyjątkowo jednomyślne. Jeden foton „idzie” zawsze tam, gdzie ten drugi. Chociaż trudno powiedzieć, który jest pierwszy, a który drugi, skoro obydwa są identyczne. Łączenie fotonów nazywa się efektem Hong-Ou-Mandela i na Wydziale Fizyki Uniwersytetu Warszawskiego po raz pierwszy na świecie udało się go sfilmować.

Quantum memory - glowing green

Układ pamięci nowej generacji do komputerów kwantowych. Zielona tuba to pamięć. Za pomocą lasera (czerwona wiązka) w atomach rubidu „zapisywana” jest informacja, która następnie może być odczytywana. Ta pamięć to także dzieło doktorantów z UW.

Nauka podstawowa

Pozostaje tylko znaleźć odpowiedź na pytanie, po co tego typu badania się robi. – Być może kiedyś uda się wyniki naszych eksperymentów wykorzystać w rozwijanych technologiach kwantowych, na razie myślimy jednak o naszych eksperymentach w kategoriach badań podstawowych – mówi Michał Jachura. – Nas bardziej niż kształt samego fotonu interesuje to, jaki kształt będzie miała para fotonów, które zaczną ze sobą interferować, zaczną się na siebie nakładać. To można wykorzystać do zupełnie nowego rodzaju mikroskopii o bardzo wysokiej rozdzielczości. – uzupełnia Radosław Chrapkiewicz.

8 komentarzy do Złapali kwant !!!

Zabawa w określanie wieku

Internetowa zabawa która polega na odgadywaniu wieku osób na fotografiach służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Internetowa zabawa która polega na odgadywaniu wieku sfotografowanych osób służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Po pierwsze nieprawdą jest, że to pierwsza tego typu aplikacja (a takie informacje pojawiły się w wielu miejscach). Odgadywać wiek, płeć i nastrój na podstawie zdjęcia czy sekwencji zdjęć (video) wiele firm próbuje od dawna. Aplikacja Microsoftu jest zabawą tylko dla użytkowników, dla firmy jest cenną nauką.

Po co komu takie programy? Pierwszy, kto nauczy się rozpoznawać emocje innych osób będzie miał w ręku ogromną władzę i ogromne pieniądze. Wiele lat temu, w USA, testowano system, który z tłumu ludzi wyławiał konkretne jednostki. Złapana w kadrze kamery twarz jest przez odpowiedni algorytm analizowana i porównywana ze zdjęciami zamieszczonymi w bazie danych. W ten sposób można z tłumy wyławiać np. przestępców, którzy uciekli z więzienia, podejrzanych, którzy się ukrywają, czy ludzi, których służby bezpieczeństwa z jakiś powodów inwigilują. Już kilka lat temu profesjonalne systemy osiągały zdolność analizowania do miliona twarzy na sekundę! Do komputera głównego systemu można dodatkowo wprowadzić algorytm, który np. pozwoli po sposobie chodzenia wyławiać z tłumu tych, którzy pod płaszczem czy kurtką niosą coś ciężkiego. Albo tych, którzy mają odpowiedni nastrój. Co to znaczy odpowiedni? Zależy od tego kto płaci. Jeżeli służby bezpieczeństwa, wyławiane z tłumu na lotnisku mogą być np. osoby zestresowane. Jeżeli system ma pracować dla kogoś kto sprzedaje dobra luksusowe będzie wyszukiwał raczej ludzi zadowolonych z siebie. Podekscytowani faceci być może będą bardziej skłonni kupować gadżety elektroniczne, a osoby zamyślone czy rozmarzone książki. Psycholodzy, socjolodzy  wiedzą lepiej jak połączyć emocje z zachowaniami konsumenckimi. Mają w tym zresztą dość sporą praktykę. Niektóre produkty kupujemy chętniej gdy muzyka w sklepie jest spokojna, inne, gdy jest rytmiczna. W wielu rozpylane są zapachy, których świadomie nie czujemy. Nie tylko sklepach, ale także biurach, fabrykach czy miejscach publicznych. Dużą praktykę mają w tym Japończycy. Wszystko po to, by projektować nasze zachowania. Na prawdę myślisz, że jesteś panem samego siebie i że świadomie podejmujesz decyzje? Jeżeli tak myślisz, mylisz się bardzo.

W pismach dla facetów reklamuje się inne produkty, niż w gazetach dla młodych matek. To logiczne. Wraz z rozwojem systemów rozpoznających emocje i intencje, targetowanie przekazu reklamowego wejdzie na zupełnie nowy poziom. Pozostaje do rozwiązania jeszcze jedna kwestia. Jak komunikować się z potencjalnym klientem? Można sobie wyobrazić tradycyjne nośniki reklamowe, które będą wyświetlały reklamy w zależności od tego kto na nie patrzy. Możliwe, ale chyba mało skuteczne. Dużo bardziej prawdopodobne jest to, że ktoś zrobi użytek z kamerek zamontowanych w komputerach, tabletach, telefonach komórkowych. Oczywiście za zgodą właścicieli. Zgodzimy się na wszystko, już tyle razy sprzedaliśmy się dla zwykłej wygody, że i na to przymkniemy oko. Już dzisiaj w wyszukiwarkach internetowych działają algorytmy, które podpowiadają treści (nie tylko reklamowe) w zależności od naszej aktywności w internecie. W przyszłości algorytmy wyszukiwania i proponowania zostaną wzbogacone o płeć, wiek i nastrój osoby, która w danym momencie korzysta z urządzenia elektronicznego.

A wracając do aplikacji służącej do „odgadywania” wieku na podstawie zdjęcia. Nie da się jednoznacznie określić wieku czy emocji na podstawie konkretnych, fizycznych cech twarzy. Łatwiej jest z określaniem płci. Po to by tego typu programy dobrze działały, muszą się tego nauczyć. Do nauki potrzebna jest jednak odpowiednia liczba przykładów. Osób, które dobrowolnie prześlą swoje zdjęcie a wynikami pochwalą się w mediach społecznościowych. Wiedza, którą zyska algorytm stojący za aplikacją warta będzie miliardy. Witajcie w klatce – króliczki doświadczalne 🙂

I jeszcze jedno. Co dzieje się ze zdjęciami, które wrzucamy do serwisu? Microsoft twierdzi, że ich nie przetrzymuje („We don’t keep the photo”) ale gdy wklikać się głębiej (w Terms of Use), wśród wielu akapitów można znaleźć stwierdzenia, które temu przeczą.

Microsoft does not claim ownership of any materials you provide to Microsoft (…). However, by posting, uploading, inputting, (…) your Submission, you are granting Microsoft, its affiliated companies, and necessary sublicensees permission to use your Submission in connection with the operation of their Internet businesses.

Co w wolnym tłumaczeniu znaczy:

Microsoft nie rości sobie praw własności jakichkolwiek materiałów (…). Jednak zamieszczając, przesyłając, wprowadzając (…) materiały, użytkownik przekazuje firmie Microsoft oraz jej spółkom zależnym i licencjobiorcom prawo do korzystania z tych materiałów w związku z działalnością tych firm.

Dalej przepisy precyzują, że firma ma prawo bez ograniczeń kopiować, rozpowszechniać, przekazywać, odtwarzać, publicznie wykonywać, powielać, edytować, tłumaczyć przekazane jej materiały. A jako, że firma nie rości sobie praw do materiałów, zrobi to podpisując nazwiskiem właściciela.

Podsumowując. Zabawa która polega na odgadywaniu wieku osób na zdjęciach służy temu, by gigant informatyczny nauczył się skutecznego radzenia sobie z tym, z czym matematyka (algorytmy informatyczne) radzą sobie kiepsko. Dzięki wrzucaniu prywatnych zdjęć dajemy firmie możliwość stworzenia unikalnej bazy z której w przyszłości, przy tworzeniu profesjonalnych narzędzi będzie mogła korzystać. I grubo na tym zarabiać. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

1 komentarz do Zabawa w określanie wieku

Komputer na światło

Wyobraź sobie komputery miliardy razy szybsze od tych, które dzisiaj mamy do dyspozycji. Po co nam takie urządzenia? Na razie jeszcze nie wiem, ale jestem pewien, że jak tylko je stworzymy, zastosowania sypną się jak z rękawa.

Wyobraź sobie komputery miliardy razy szybsze od tych, które dzisiaj mamy do dyspozycji. Po co nam takie urządzenia? Na razie jeszcze nie wiem, ale jestem pewien, że jak tylko je stworzymy, zastosowania sypną się jak z rękawa.

Skąd ta pewność? Tego uczy nas historia. Także ta najnowsza. W 1946 roku Thomas Watson, prezes koncernu IBM, firmy, która właśnie skonstruowała pierwszy komputer, stwierdził publicznie, że tego typu maszyny nigdy nie będą powszechne. W dość długim przemówieniu powiedział także, że jego zdaniem w przyszłości świat nie będzie potrzebował więcej niż 5 maszyn cyfrowych. No tak, przecież gry były planszowe, o internecie nikt nie słyszał, a dokumenty można przecież pisać na maszynie do pisania. Tymczasem dzisiaj mocna pozycja firmy IBM została zbudowana właśnie na produkcji ogólnie dostępnych i powszechnych maszyn cyfrowych. I jeszcze jeden przykład. W połowie lat 90. XX wieku (czyli zaledwie 20 lat temu) guru technologii cyfrowej, założyciel i szef Microsoftu Bill Gates stwierdził, że internet to mało użyteczna zabawka. Faktycznie, wtedy był on czymś takim. Faktycznie, listy można było wysłać pocztą albo faksem. Zawsze to samo. Cywilizacja rozwija się dzięki wizjonerom spełniającym swoje marzenia. Dzięki ludziom, którzy nie zawsze potrafią odpowiedzieć na pytania „po co?” albo „do czego nam się to przyda?”. Historia uczy jednak, że każde odkrycie, każda rewolucja błyskawicznie zostają zagospodarowane. I stąd pewność, że komputery kwantowe, bo o nich mowa, będą urządzeniami, bez których ludzie nie będą sobie wyobrażali życia.

Światłem hurtowo

Pomysł, by wykorzystać kwanty (np. pojedyncze cząstki światła) jako nośnik informacji, jako „medium” do prowadzenia obliczeń, ma około 40 lat. Jak to często bywa, w takich sytuacjach dość trudno wskazać pierwszego pomysłodawcę, ale nie ma wątpliwości, że jednym z pierwszych był znany fizyk Richard Feynman. No i potoczyło się. Na kilku uniwersytetach grupy naukowców rozpoczęły teoretyczne obliczenia. Jedna z takich grup, związana z uniwersytetem oksfordzkim, stworzyła protokoły kwantowe. Współpracował z nią też Polak, Artur Ekert. Po około 10 latach od rzucenia pomysłu, czyli w połowie lat 90. XX wieku, powstały pierwsze podstawowe elementy konstrukcji komputera kwantowego, czyli bramki, które przetwarzały kubity. Co to takiego? To cząstki elementarne, fotony lub elektrony, których różne stany w pewnym sensie są nośnikami informacji. Tylko dlaczego komputer zbudowany „na kwantach” ma być szybszy od tradycyjnego? Sprawa, wbrew pozorom, nie jest aż tak bardzo skomplikowana. Podstawą jest przeniesienie się do zupełnie innego świata. Świata, w którym nic nie jest takie jak w naszym świecie. Mam tutaj na myśli świat kwantów, same podstawy budowy naszej materii. Zjawiska, które tam występują, są dla nas fascynujące, bo wokół nas ich nie zauważamy. Więcej, one są nielogiczne, przeczące intuicji i zdrowemu rozsądkowi.

Jedną z dziedzin badających ten świat jest optyka kwantowa. Tak jak „zwykła” optyka, czyli ta, której uczymy się w szkole na lekcjach przyrody czy fizyki, tak samo i ta kwantowa zajmuje się światłem. Różnica polega na tym, że optyka kwantowa bada pojedyncze cząstki światła, czyli kwanty albo ich niewielkie grupy (pary, trójki…), podczas gdy „optyka szkolna” zajmuje się światłem bardziej „hurtowo”. Bada je jako zbiór ogromnej ilości kwantów. Właśnie w tych ogromnych ilościach fotonów (czyli w wiązkach czy promieniach światła) gubią się te zjawiska, które w przypadku pojedynczych cząstek występują. O co konkretnie chodzi? Na przykład o zjawisko superpozycji. – To zjawisko nie występuje w świecie klasycznym i bardzo trudno w ogóle znaleźć do niego zrozumiałą analogię – mówi „Gościowi” Radosław Chrapkiewicz, doktorant Wydziału Fizyki Uniwersytetu Warszawskiego.

I w lewo, i w prawo

Superpozycja. O co chodzi? – Definicja mówi, że to istnienie dwóch pozornie wykluczających się stanów cząstki – mówi Chrapkiewicz. I od razu dodaje, że superpozycja w naszym świecie nie występuje, ale gdyby występowała, strzałka skierowana w prawo równocześnie byłaby skierowana także w lewo, a prawy but byłby równocześnie lewym. – W świecie, który nas otacza, strzałka jest skierowana albo w jedną, albo w drugą stronę, a jeden but może być albo prawy, albo lewy. Ale w świecie kwantów jest inaczej. Jedna cząstka może istnieć w stanach, które się wzajemnie wykluczają. Tylko co to ma wspólnego z komputerami kwantowymi? W klasycznym komputerze, takim, jaki stoi w niemal każdym domu, takim, na jakim piszę ten artykuł, wszelkie obliczenia robi się na zerach i jedynkach. Maleńkie elementy elektroniczne mogą przyjmować albo wartość „0”, albo „1”. – W komputerze kwantowym w pewnym sensie zera i jedynki istnieją równocześnie, a to oznacza, że możemy wykonywać równocześnie wiele obliczeń naraz – mówi Radosław Chrapkiewicz. Muszę mieć niewyraźną minę, bo Radek tłumaczy dalej. – Jeden klasyczny bit to jest zero lub jedynka, jeden kwantowy bit, czyli kubit, to jakiś stan równoczesnego istnienia zera i jedynki. W tym samym momencie zamiast jednej wartości mamy dwie współistniejące. Jeżeli weźmiemy dwa kubity, mamy jednoczesne współistnienie czterech wartości, bo tyle jest możliwych kombinacji zer i jedynek. A jeżeli zbuduję komputer dziesięciokubitowy, różnych możliwości jest 2 do 10 potęgi, czyli 1024, podczas gdy w klasycznym komputerze dziesięciobitowym jest tylko 10 możliwości – tłumaczy Radosław Chrapkiewicz. I dodaje: – Liczba operacji możliwych do wykonania równocześnie rośnie bardzo szybko wraz ze wzrostem liczby kubitów. Komputery skonstruowane w ten sposób działałyby nieporównywalnie szybciej, bo wiele operacji mogłyby wykonywać równocześnie. Dzisiejsze komputery nie potrafią robić kilku operacji naraz – kończy Chrapkiewicz.

Zasada działania komputera kwantowego nie wydaje się skomplikowana. Ale jak jest z jej realizacją? No i tutaj pojawia się problem. Dzisiaj nie ma jeszcze układów, które z czystym sumieniem można byłoby nazwać wielokubitowymi. Co prawda na początku lutego 2007 roku firma D-Wave Systems zaprezentowała 128-kubitowy komputer, ale istnieją uzasadnione wątpliwości, czy to rzeczywiście jest „pełnowartościowy” komputer kwantowy, czy tylko urządzenie, które wykorzystuje pewne zjawiska kwantowe. Być może różnica pomiędzy tymi dwoma przypadkami jest subtelna, ale specjaliści ją zauważają. Ale nawet w przypadku komputera, który nie jest przez wszystkich zaliczany do maszyn kwantowych, liczby mogą robić wrażenie. Jedna z grup badaczy twierdzi, że stworzyła czip, który może dokonywać ponad 10^38 obliczeń naraz. Zwykłemu, klasycznemu komputerowi zajęłoby to kilka milionów lat.

To takie logiczne

No i powstaje pytanie kluczowe. Po co nam tak szybkie komputery? Kilka zastosowań przychodzi do głowy od razu. Zastosowania wojskowe, a właściwie wywiadowcze. Dzisiejsze komputery nie radzą sobie z ogromną ilością danych, które nadsyłają urządzenia podsłuchowe. Ludzie odpowiedzialni w strukturach państwa za bezpieczeństwo (własnych obywateli) nie lubią sytuacji, gdy mają dane, ale nie są ich gdy przeanalizować, bo jest ich za dużo. Niewiele instytucji ma fundusze na to, by inwestować w takie dziedziny nauki jak optyka kwantowa. Nieliczne są instytucje związane z wojskiem czy wywiadem. Amerykańska Agencja Bezpieczeństwa Narodowego, która zajmuje się tym drugim, w komputery kwantowe inwestuje duże pieniądze. Zresztą podobnie było z komputerami, których dzisiaj używamy. Ich rozwój związany był z Projektem Manhattan – budowy pierwszej bomby jądrowej. – Ta analogia jest bardzo dobra. Moim zdaniem komputery kwantowe dzisiaj są na takim etapie rozwoju technologicznego, jak w latach 40. XX wieku były komputery klasyczne – mówi Radosław Chrapkiewicz. I dodaje, że nie sposób dzisiaj powiedzieć, kiedy przyjdzie przełom.

Choć sam zajmuje się optyką kwantową, nie jest w stanie wyobrazić sobie komputerów kwantowych w każdym domu czy w zminiaturyzowanej wersji zastosowanych w jakichś urządzeniach mobilnych, takich jak np. dzisiejsze smartfony. Nie tylko zresztą on. Przegląd specjalistycznych stron internetowych pokazuje, że gdy mowa o wykorzystaniu komputerów kwantowych, najczęściej pojawiają się stwierdzenia o analizie dużej ilości danych, w tym danych naukowych i o skomplikowanych modelach matematycznych, dotyczących np. pogody czy na przykład projektowania leków. Nic dla ludzi? Cóż, leki są jak najbardziej dla ludzi, ale faktycznie brakuje nam chyba wyobraźni, by dzisiaj znaleźć zastosowanie dla maszyn o tak ogromnej mocy obliczeniowej. Spokojnie, gdy pojawią się takie komputery, pojawią się i zastosowania. A wtedy będziemy nieskończenie zdziwieni, że wcześniej tych zastosowań nie potrafiliśmy zauważyć. Przecież one są takie… logiczne.

komputer kwantowy

 

>>> Na zdjęciu układ skonstruowany przez firmę D-Wave Systems, zawierający 128 kubitów.

 

Tekst ukazał się w tygodniku Gość Niedzielny

6 komentarzy do Komputer na światło

Telepatia działa…

…przez internet. Przeprowadzono eksperyment, w ramach którego udało się skomunikować ze sobą dwa oddalone od siebie mózgi. W efekcie jeden człowiek zrobił coś, co pomyślał drugi.

…przez internet. Przeprowadzono eksperyment, w ramach którego udało się skomunikować ze sobą dwa oddalone od siebie mózgi. W efekcie jeden człowiek zrobił coś, co pomyślał drugi.

Nieinwazyjny interfejs mózg–mózg jest czymś, co budzi równie dużo obaw, co nadziei i fascynacji. Odkrycie czy raczej eksperyment był dość naturalną konsekwencją prac, które prowadzi się od lat i które polegają na „sprzęgnięciu” ze sobą mózgu i komputera. Interfejsy mózg–komputer działają dzięki odczytowi, a następnie skomplikowanej interpretacji sygnałów elektrycznych, które generuje ludzki mózg. Te sygnały mogą być odczytywane wprost z mózgu, ale także (co czyni całą sprawę jeszcze bardziej skomplikowaną) na powierzchni skóry głowy. Zresztą te same sygnały są analizowane w znanej lekarzom od lat metodzie EEG. Interfejs mózg–komputer jest kolejnym krokiem. Sygnały są nie tylko rejestrowane, ale przypisywane jest im pewne znaczenie. I tak np. osoba niepełnosprawna myśląc, jest w stanie kierować wózkiem inwalidzkim. Albo ktoś całkowicie sparaliżowany jest w stanie komunikować się z otoczeniem poprzez koncentrację, wyobrażanie sobie np. liter, które następnie pojawiają się na ekranie komputera (opisuję to w skrócie, bo w rzeczywistości proces jest bardziej złożony).

Jak mózg z komputerem

Wspomniane techniki nie są przeznaczone oczywiście tylko dla ludzi chorych. Już dziś można kupić urządzenie przypominające kask, które zakłada się na głowę, co pozwala za pomocą myśli sterować postaciami w grze komputerowej. Być może w przyszłości komunikacja ludzi z urządzeniami elektronicznymi w całości będzie się opierała na falach mózgowych. Dzisiaj w komputerze czy telefonie niezbędna jest klawiatura, myszka czy dotykowy ekran. Inaczej nie wprowadzimy do urządzenia informacji, bez tego nie wyegzekwujemy żadnego działania. Przyszłości nie da się przewidzieć, ale nie znaczy to, że nie można zostać futurologiem. Sytuacja, w której myślami będę „współpracował” z komputerem, wydaje mi się fascynująca. Ale to oczywiście nie koniec drogi, tylko być może dopiero jej początek. No bo skoro da się skomunikować pracę mózgu i komputera, dlaczego nie spróbować komunikacji pomiędzy dwoma mózgami? Naukowcy z amerykańskiego Uniwersytetu Waszyngtona stworzyli taki interfejs. Informacja pomiędzy dwoma mózgami została przesłana siecią internetową.

Pisząc „informacja”, nie mam jednak na myśli konkretnej wiedzy przekazywanej pomiędzy mózgami, tylko raczej impuls do zrobienia czegoś. Eksperyment wykonało dwóch uczonych, którzy tematem zajmowali się od wielu lat. Jeden to Andrea Stocco, drugi Rajesh Rao. W sierpniu tego roku ci dwaj panowie usiedli wygodnie w fotelach w dwóch różnych punktach kampusu uniwersyteckiego i zrobili coś, co będzie opisywane kiedyś w podręcznikach. Rao założył na głowę czepek z elektrodami rejestrującymi fale mózgowe. Z kolei Stocco założył czepek z elektrodami do tzw. przezczaszkowej stymulacji magnetycznej. W pewnym sensie te urządzenia są swoją przeciwnością. Jedno fale mózgowe rejestruje, a drugie raczej je w mózgu generuje. Rao nie myślał o niczym specjalnym, po prostu grał w grę komputerową, z tym, że nie przez klawiaturę czy inne urządzenie peryferyjne, tylko używał do tego własnych myśli. Gdy jego zadaniem było trafienie w cel znajdujący się z prawej strony ekranu komputera, wyobrażał sobie, że porusza prawą ręką i trafia w ten punkt. Tymczasem niemal dokładnie w tej samej chwili jego kolega Stocco, kilkaset metrów dalej, rzeczywiście poruszył prawą ręką.

Mimowolny tik

Stocco miał na uszach słuchawki (po to, by nie było podejrzeń, że ktoś mu podpowiada) i słuchał muzyki. Nie patrzył też na ekran komputera. Był zrelaksowany, odpoczywał, a w pewnym momencie poruszył palcem ręki. Nie do końca potrafił powiedzieć, dlaczego to zrobił. Tłumaczył, że jego ruch „przypominał mimowolny tik”. Ten eksperyment oznacza, że po raz pierwszy udało się przekazać informację pomiędzy dwoma mózgami. Na razie ten przepływ jest jednokierunkowy, ale wiadomo, że kolejnym krokiem będzie dwukierunkowość. Co ciekawe, w tym eksperymencie w zasadzie nie używa się niczego, co dotychczas nie było znane. Zarówno EEG, jak i stymulację magnetyczną lekarze stosują od wielu lat. Przełom polega na tym, że badaczom udało się, wykorzystując znane narzędzia, uzyskać zupełnie nową jakość. Badacze jak zwykle studzą emocje.

Eksperyment powiódł się dlatego, że ośrodek odpowiedzialny za motorykę nie jest usytuowany we wnętrzu mózgu, tylko na jego powierzchni. W innym wypadku nie udałoby się go pobudzić bezinwazyjnie z zewnątrz. Nie ma żadnych szans – jak twierdzą – na to, by obecna metoda była wykorzystywana do wpływania na myśli drugiego człowieka. Badacze kategorycznie stwierdzili również, że nie ma także możliwości sterowania drugim człowiekiem bez jego woli. Na co w takim razie są szanse? Dość trudno na tym etapie powiedzieć, ale niemal od razu narzuca się pomoc osobom niepełnosprawnym w komunikacji ze światem zewnętrznym. Być może uda się stworzyć urządzenia pomagające ludziom w kontrolowaniu bardzo skomplikowanych urządzeń, takich, jakimi są np. samoloty.

Dwóch pilotów mogłoby być w jakiś sposób połączonych ze sobą, tak, że działaliby jako jeden organizm, a nie dwa oddzielne. Z drugiej strony piloci przez wielogodzinne szkolenia, nawet bez nowej technologii, potrafią doskonale ze sobą współpracować. Jest jeszcze coś. A może ta technologia przyda się w porozumiewaniu pomiędzy osobami, które mówią w różnych językach? Fale mózgowe są przecież uniwersalne i nie zależą od wieku, kultury i pochodzenia. Tym bardziej że nikt nie powiedział, że w takiej komunikacji mogą uczestniczyć tylko dwie osoby.

Tekst ukazał się w tygodniku Gość Niedzielny

1 komentarz do Telepatia działa…

Ten robot ma żywy mózg

Komórki szczurzego mózgu nauczyły się kontrolować pracę robota. – Dzięki temu może zrozumiemy jak wyleczyć chorobę Alzheimera – mówią naukowcy. Może i tak, ale mnie przechodzą ciarki po plecach jak myślę o tym eksperymencie.

Ludzki mózg, stanowi dla badaczy większą tajemnicę niż wszechświat. Nie wiemy jak w detalach przebiega proces uczenia się czy zapamiętywania. Nie wiemy dlaczego tkanka nerwowa się nie regeneruje. I co szczególnie ważne nie wiemy jak leczyć wiele chorób związanych z naszą pamięcią.

Mózg w mechanicznym ciele

Badacze z brytyjskiego University of Reading wybudowali robota, którego głównym zajęciem jest… jeżdżenie od ściany do ściany. Jest mały, wolny i prawie nic nie potrafi. Zamiast kamery ma zwykły sonar, a duże koła poruszają się mało precyzyjnie. Jest jednak szczególny. Jego mózgiem nie jest elektroniczny procesor, tylko żywe komórki nerwowe szczura. Ten robot ma żywy mózg ! To on najpierw się uczy, a po chwili sam decyduje gdzie robot ma jechać.

Kevin-foto Mózgiem robota jest 300 tyś komórek pobranych z kory mózgowej szczura. Naukowcy chemicznie pozbawili neurony połączeń międzykomórkowych (zabili ich pamięć ?) a następnie umieścili w specjalnym, wypełnionym pożywką i antybiotykami pojemniku. Stworzyli im warunki w których mogły samodzielnie żyć. W dno tego pojemnika zatopionych było 60 przewodów elektrycznych a ich zakończenia, elektrody, były wyprowadzone do środka pojemnika. To właśnie tymi elektrodami wędrowały impulsy elektryczne, np. wtedy gry robot zderzył się ze ścianą. Tymi samymi kanałami wędrowała informacja z sonarów. Gdy urządzenie zbliżało się do ściany, na elektrodach pojawiało się odpowiednie napięcie elektryczne. Gdy robot zderzał się ze ścianą, do komórek wędrował inny sygnał elektryczny a odpowiedni system nakazywał kręcić się kołom robota w innym kierunku.

Komórki uczą się

Po kilku próbach okazało się, że żywe komórki coraz rzadziej pozwalałby zderzać się ze ścianą. Nauczyły się, że sygnał „przed nami ściana” oznacza, że za chwilę dojdzie do kolizji. Żeby do tego nie dopuścić, tymi samymi elektrodami sygnał elektryczny wędrował w drugim kierunku. Szczurzy mózg w ciele robota nakazywał kołom skręt i do zderzenia ze ścianą nie dochodziło. Żywe komórki zaczęły kontrolować maszynę.

Gordons-neuronsPo jakimś czasie robot unikał nawet 90 proc. wszystkich kolizji. Ale nie o kontrolę, albo nie tylko o kontrolę chodzi. Naukowcom szczególnie zależy na tym, żeby na gorącym uczynku złapać proces uczenia się. Komórki nerwowe w specjalnym odżywczym odczynniku zaczęły rekonstruować połączenia pomiędzy sobą. Zaczęły do siebie wysyłać sygnały elektryczne. Naukowcy przeprowadzający to doświadczenie mówili, że wyglądało to trochę tak jak gdyby pojedyncze neurony szukały siebie nawzajem, a równocześnie komunikowały gdzie same się znajdują. Tak jak gdyby same były żywym organizmem. – Wydaje się, że komórki mózgu mogą ponownie się organizować w każdych warunkach, które nie są dla nich zabójcze – powiedział Steve Potter z Georgia Institute of Technology w Atlancie, USA. Każdy sygnał elektryczny jaki pochodził od komórek nerwowych, przez elektrody dostawał się do komputera i tam był rejestrowany. Szczurzy mózg, choć kierował robotem, nie przestawał być żywą tkanką. Potrzebował energii (stąd żel odżywczy w pojemniku z komórkami) oraz antybakteryjnej tarczy (stąd w żelu antybiotyki). To jednak nie wystarcza. Żywe komórki muszą mieć zapewnioną odpowiednią temperaturę. Dlatego też w czasie dłuższych prób szczurze komórki mózgowe wcale nie były fizycznie w robocie. Krążek z elektrodami i komórkami był podłączony do urządzenia, które sygnały elektryczne „tłumaczyło” na fale radiowe. Innymi słowy mózg robota był w inkubatorze w którym utrzymywana była optymalna temperatura, a robot sygnały o tym jak ma się poruszać dostawał za pośrednictwem fal radiowych (wykorzystano technologię Bluetooth). Odpowiednie urządzenie pozwalało na dwustronny kontakt pomiędzy jeżdżącym robotem i „jego” mózgiem w inkubatorze.

Czy to komuś pomoże ?

Mózg poza urządzeniem…brzmi abstrakcyjnie. Choć z drugiej strony dzisiejsze komputery także często korzystają z mocy obliczeniowej, która znajduje się poza ich „ciałem”. Coraz częściej to w chmurze trzymamy dane a nawet całe programy.

– To co w tych badaniach najciekawsze, to znalezienie odpowiedzi na pytanie jak aktywność pojedynczych neuronów przekłada się na złożone zachowania całych organizmów – powiedział dr Ben Whalley, jeden z naukowców biorących udział w badaniach. – Ten eksperyment pozwala na wgląd w ten proces na poziomie pojedynczych komórek. To pozwoli nam na sformułowanie odpowiedzi na pytania fundamentalne – dodaje. Naukowcom udało się nauczyć żywe komórki kontroli nad prostym robotem. Ale to nie oznacza końca eksperymentu. Kolejnym krokiem będzie uszkodzenie połączeń pomiędzy wyuczonymi już komórkami mózgu w taki sposób w jaki upośledzone są połączenia u osób cierpiących na chorobę Alzheimera czy Parkinsona. Jak teraz będzie wyglądał proces uczenia się ? Czy robot z mózgiem który „cierpi” na chorobę Alzheimera będzie także się uczył ? Czy powstaną nowe połączenia ? Jeżeli nie, co zrobić żeby powstawały ?

Choć badacze zaangażowani w projekt uważają, że ich praca będzie krokiem milowym w rozumieniu wielu procesów które dzieją się w mózgu, nie brakuje i takich, którzy studzą emocje. – To zaledwie model. To nie badania mózgu, tylko jego małego wycinka w sztucznym otoczeniu. Oczywiście wyniki badań mogą nas wiele nauczyć, ale mogą też zmylić nas na przyszłość. Przecież nie wiemy czy to co zaobserwujemy w laboratorium wystąpiłoby w rzeczywistości – powiedział Steve Potter z Georgia Institute of Technology. – Trzeba być bardzo ostrożnym w wyciąganiu daleko idących wniosków – dodaje. Autorzy badań zgadzają się z tym podejściem, ale podkreślają, że… – nawet jeżeli przeprowadzane przez nas eksperymenty tylko w 1 proc. pogłębią naszą wiedzę o chorobach takich jak Alzheimer, będzie to świadczyło o tym, że warto je było przeprowadzić – powiedział profesor Kevin Warwick z School of Systems Engineering. Co do tego nie ma jednak chyba żadnej wątpliwości.

 

Tekst ukazał się w Tygodniku Gość Niedzielny.

1 komentarz do Ten robot ma żywy mózg

Type on the field below and hit Enter/Return to search