Czy błyskawice oczyszczają atmosferę?

Redakcja NTL
NTL
04.05.2021
Przewidywany czas: 3 min

Pioruny wzbudzają różne skojarzenia i choć dla wielu są bardzo pięknym zjawiskiem, to jednocześnie są bardzo niebezpieczne. Badania opublikowane w czasopiśmie Science udowadniają, że błyskawice mogą odgrywać ważną rolę w wypłukiwaniu zanieczyszczeń z atmosfery.

Wesprzyj Zrzutkę Nauka. To Lubię

Jak powstaje piorun?

Zacznijmy od tego, jak powstają pioruny? To wynik różnicy potencjałów dwóch naładowanych obszarów. We wnętrzu chmur burzowych wiatr porusza krople wody i kryształki lodu, które trąc o siebie wymieniają między sobą ładunki. Prąd powietrza rozdziela cząsteczki i te dodatnio naładowane przemieszczają się ku górze, natomiast te naładowane ujemnie wędrują w dół. Kiedy różnica ładunków staje się zbyt duża, w powietrzu tworzy się kanał, przez który gwałtownie przepływają ładunki.

Jak powstaje piorun?

Ładunek może także przeskoczyć na Ziemię. Kiedy spód chmury elektryzuje się ujemnie, to gromadzony ładunek odpycha elektrony na powierzchni Ziemi. Powierzchnia ma wtedy ładunek dodatni. Różnica potencjałów powoduje, że ładunki zaczynają szukać najprostszej drogi do wyładowania. Najpierw wysyłane jest wyładowanie pilotujące, trwające ułamek sekundy, które jonizuje powietrze i zmniejsza opór elektryczny. Powstały kanał wykorzystują wyładowania główne. Rozgrzewają one powietrze do olbrzymiej temperatury 30 000 °C, co widzimy jako błysk. Wysoka temperatura rozpręża powietrze powodując falę dźwiękową, czyli grzmot.

Oczyszczające działanie błyskawic

Duże wyładowania elektryczne nie pozostają obojętne dla cząsteczek powietrza i mogą sporo namieszać w chemii atmosfery. Obserwacje z samolotu ścigającego burze pokazały, że pioruny mogą tworzyć duże ilości oczyszczających powietrze związków zwanych oksydantami (utleniaczami), które pomagają oczyszczać powietrze poprzez reakcję z zanieczyszczeniami, takimi jak metan i formować molekuły bardziej rozpuszczalne w wodzie lub bardziej lepkie. To pozwala na ich łatwiejsze wypłukanie z deszczem z ziemskiej atmosfery.

Badacze zdawali sobie sprawę z tego, że błyskawice produkują tlenek azotu, co może prowadzić do powstawania takich utleniaczy jak rodniki hydroksylowe, ale nie wiedzieli, że pioruny bezpośrednio produkują także duże ilości samych utleniaczy. Rodniki to atomy lub cząsteczki, które zawierają niesparowane elektrony, a więc zazwyczaj bardzo reaktywne chemicznie. W maju i czerwcu 2012 roku odrzutowiec NASA zmierzył zawartość dwóch oksydantów w chmurach burzowych nad stanami Kolorado, Oklahomą i Teksasem. Pierwszym z nich był rodnik hydroksylowy, OH. Drugim był podobny utleniacz nazywany rodnikiem wodoronadtlenkowym, HO2. Łączna koncentracja cząsteczek OH i HO2 wygenerowana przez pioruny i pozostałe naelektryzowane obszary powietrza osiągnęły tysiące cząsteczek na bilion w niektórych częściach tych chmur. Najwyższa koncentracja OH, poprzednio zaobserwowana w atmosferze, wynosiła kilka cząsteczek na bilion. W przypadku HO2 obserwowano do 150 cząsteczek na bilion. Naukowcy nie spodziewali się tak dużego wyniku. Nawet przez pewien czas odłożyli je na półkę, bo wydały im się zbyt nieprawdopodobne. Eksperymenty laboratoryjne potwierdziły jednak, że elektryczność naprawdę potrafi wygenerować tak duże ilości OH i HO2, co pomogło potwierdzić poprawność pomiarów.

Jak powstaje błyskawica

Mogłoby się wydawać, że to i tak nie jest dużo, jednak jeśli weźmiemy pod uwagę, że w każdej chwili przez Ziemię przetacza się około 2000 burz z piorunami, to może się okazać, że efekt ten jest bardzo znaczący. Naukowcy orientacyjnie oszacowali, że wyładowania mogą odpowiadać za 2-16% atmosferycznego OH. Bardziej dokładne oszacowanie będzie wymagać obserwacji większej ilości chmur burzowych.

Źródło: https://www.sciencenews.org/

 

Zobacz również
Czym Iran zaatakował Izrael?

Czym Iran zaatakował Izrael?

15.04.2024 00:48:35

Podcasty NTL