Jak powstaje burza i co przyciąga pioruny?


Pioruny to dość tajemnicze zjawiska i wciąż wielu rzeczy o nich nie wiemy. Na przykład tego, jaka jest rola w ich powstawaniu promieniowania kosmicznego? W tym artykule opowiem o tym, co przyciąga pioruny oraz jak powstaje burza.
Co to jest piorun? Czy wiemy o nim wszystko?
Zwykle widzimy, jak lecą z nieba ku ziemi, ale zdarza się, że błyskają pomiędzy chmurami, a nawet z chmur ku górze w kierunku jonosfery. Burze najczęściej pojawiają się latem i na ogół częściej występują w górach. Choć może się to wydawać dziwne, nie do końca wiadomo, jak powstaje piorun. Bez wchodzenia w szczegóły generalnie wszystko wiemy, ale jak wchodzimy w szczegóły, to pojawiają się takie detale, o których nie mamy specjalnie pojęcia. A więc co to jest piorun? W skrócie mówiąc, piorun to wyładowania elektryczne. Ładunek elektryczny zgromadzony w jednym miejscu przeskakuje w inne, gdzie jest go mniej.
Ale od początku, najpierw fizyka!
Jak na fizyka cząstek przystało każdą opowieść lubię zacząć od początku, więc zaczynam. Materia wokół nas zbudowana jest z atomów. Atomy węgla, tlenu, żelaza, czegokolwiek. One wszystkie są skonstruowane według tego samego przepisu. Wokół naładowanego dodatnio jądra atomowego posklejanego z dodatnich protonów i neutralnych elektrycznie neutronów krążą elektrony o ładunku ujemnym. Atom elektrycznie jest obojętny. To znaczy, że liczba dodatnich protonów w jądrze jest taka sama jak liczba krążących wokół niego ujemnych elektronów.
Rozdzielenie ładunków i mini pioruny
W niektórych sytuacjach zdarza się jednak, że ta równowaga zostaje zaburzona. Zdarza się tak na przykład, gdy pocieramy o siebie przedmioty wykonane z różnych materiałów albo materiałów o różnej temperaturze. Każdy to obserwuje, np. przy zakładaniu swetra wykonanego z włókien syntetycznych. Gdy przeciska się przez głowę, włosy ocierają się o włókna materiału i następuje właśnie takie rozdzielenie ładunków.
W sumie liczba plusów i minusów nie zmienia się. Zmienia się za to ich położenie. Jeden materiał ma nadmiar plusów, a drugi minusów. Przy zakładaniu swetra słychać czasami takie trzaski. I to właśnie są takie niewielkie wyładowania elektryczne. Takie mini pioruny. Ładunki ujemne przeskakują z ciała z nadmiarem minusów na obiekt z nadmiarem plusów. Co to wszystko ma wspólnego z chmurą i z piorunami?
Pionowy wiatr i szybki ruch kropel
We wnętrzu chmury burzowej wieje bardzo silny wiatr. Szczególnie często, jak się wydaje, pionowo. W efekcie w chmurze panuje ciągły i bardzo szybki ruch zamarzniętych kropel wody i kryształów lodu. Jedne przemieszczają się ku górze, bardzo szybko się ochładzając, inne z kolei spadają. Zderzają się ze sobą, ocierając się o siebie, a przy okazji elektryzują. Kryształki lodu elektryzują się dodatnio. Podczas gdy zamarznięte krople wody, tzw. krupy, ujemnie. Krupy są cięższe od kryształów lodu i opadają na dno chmury. W efekcie spód chmury ma nadmiar ładunków ujemnych, a sam jej szczyt dodatnich. Ładunki jednoimienne odpychają się, więc w dole chmury jest nadmiar ładunków ujemnych. Z powierzchni ziemi pod chmurą ładunki ujemne uciekają.
Im bardziej dół chmury jest naładowany ujemnie, tym bardziej powierzchnia ziemi pod chmurą jest naładowana dodatnio. Ładunki o przeciwnych znakach jednak się przyciągają, więc te minusy z dołu chmury chętnie przeskoczyłyby na plusy na powierzchni ziemi.
Czy wyładowanie przeskoczy między dwoma ciałami?
To zależy od wielu czynników.
- Jednym z nich jest tzw. różnica potencjałów, mówiąca o różnicy w liczbie ładunków zgromadzonych pomiędzy obiektami. Im więcej minusów na dnie chmury, tym łatwiej przeskoczą one na powierzchnię ziemi.
- Drugim czynnikiem jest odległość, na jaką miałyby przeskoczyć. Im ta odległość jest mniejsza, tym łatwiej o wyładowania. To m.in. dlatego pioruny częściej uderzają w wieże kościołów czy w obiekty znajdujące się na szczytach wzniesień. Mają po prostu mniejszą drogę do przebycia.
- Ważna jest także wilgotność powietrza. To jest kolejny czynnik. Im większa, tym łatwiej dochodzi do wyładowania.
- Liczy się także kształt przedmiotu – to też jest bardzo istotne. Pioruny chętnie uderzają w obiekty o ostro zakończonych kątach.
Jak powstaje piorun i jaką wybiera drogę?
Pomiędzy chmurą burzową a ziemią powstaje właśnie ta różnica potencjałów. Jest to różnica rzędu dziesiątek, a czasami nawet setek milionów woltów. To wystarczy, by doszło do tzw. wyładowania. Nie do końca wiadomo, co zapoczątkowuje i dlaczego piorun leci taką, a nie inną drogą, by dotrzeć na Ziemię. Ładunek elektryczny wybiera zawsze drogę o najmniejszym oporze. Takie drogi wytyczane mogą być przez cząstki kosmiczne, cząstki promieniowania kosmicznego o bardzo wysokich energiach. Wlatują one w atmosferę, zderzają się z atomami atmosfery i jonizują je, czyli wybijają nadmiar elektronów. W efekcie swojego przejścia zostawiają w atmosferze taki tunel, w którym panuje znacznie mniejszy opór elektryczny. Tunel ten to swego rodzaju autostrada dla ładunków z chmury.
Nigdy on nie jest linią prostą, właśnie dlatego, że cząsteczki promieniowania kosmicznego zderzają się z atomami atmosfery i o trochę wygląda jak kula bilardowa.
Jak powstaje wyładowanie?
Bardzo ciekawy jest sam moment powstawania wyładowania.
- Przed piorunem chmurę burzową opuszcza tzw. prekursor. To jest niewielka ilość ładunku, który skokowo porusza się od chmury ku powierzchni Ziemi z prędkością kilkudziesięciu tysięcy kilometrów na sekundę. Całe zjawisko trwa nie więcej niż kilka tysięcznych części sekundy i w zasadzie jest nie do zauważenia nieuzbrojonym okiem.
- Tuż za prekursorem chmury opuszcza ten piorun właściwy. Ten porusza się wolniej, bo „zaledwie” z prędkością kilku tysięcy kilometrów na sekundę, ale za to niesie nieporównywalnie większą energię.
- Pioruny mają długość kilku kilometrów i szerokość wspomnianego już tego takiego tunelu pozostawionego przez cząstki kosmiczne, kilkadziesiąt centymetrów, choć główny ładunek porusza się w kanale o grubości zaledwie kilku centymetrów.
Natężenie wyładowania głównego może wynosić ponad 100 tysięcy amperów, a napięcie dziesiątki milionów woltów. Całkowita energia setki kilowatogodzin. Niestety nie potrafimy wykorzystać energii piorunów, a badacze, którzy tego próbowali, często przypłacali to życiem. A bardzo szkoda, bo byłoby o co walczyć. Na całej Ziemi w ciągu jednej doby pioruny przenoszą energię rzędu bilionów, bilionów kilowatogodzin.
Przeczytaj także:
Sezon na kleszcze – jak się chronić przed kąsającymi pajęczakami? Kompleksowy poradnik