Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Tak, światło składa się z cząstek. A właściwie sprawa jest bardziej złożona. Światło ma cechy fali (podobnej do tej na wodzie), ale wykazuje też cechy korpuskularne. W skrócie mówiąc, jest i falą, i cząstką. Trudno to odnieść do naszej rzeczywistości, bo w makroświecie cechy fali i cząstki wykluczają się. W świecie kwantów nic się nie wyklucza.

Quantum paparazzi spying identical photon pairs

„Łapacze fotonów”, młodzi fizycy z UW, na tym zdjęciu zachowują się jak fotony. Są w dwóch miejscach równocześnie. Obok układu pomiarowego Radosław Chrapkiewicz (po prawej) oraz Michał Jachura (stojący za nim) .

W zasadzie proste 

Cząstki światła nazywają się kwantami. Nie mają masy spoczynkowej, nie da się ich zatrzymać i przyjrzeć im się „na spokojnie”. Przeciwnie, pędzą z prędkościami, które trudno sobie nawet wyobrazić. 300 tys. kilometrów na sekundę! Ile to jest? Odległość między Zakopanem i Trójmiastem (prawie 700 km) światło pokonuje w tysięczne części sekundy. Jak złapać, jak sfotografować coś, co porusza się z taką prędkością? – Układ, który zastosowaliśmy do naszych pomiarów, jest dość złożony, ale sama idea nie jest skomplikowana – powiedział mi Michał Jachura z Uniwersytetu Warszawskiego. – Źródłem fotonów jest fioletowy laser. Padają one na urządzenie, w którym z jednego fotonu powstaje jeden elektron. Następnym elementem jest wzmacniacz powielający ten jeden elektron. Tak powstaje kilka milionów elektronów, które następnie padają na płytkę z fosforu, gdzie powodują błysk światła. Ten błysk rejestrujemy specjalną kamerą – mówi drugi z młodych badaczy, Radosław Chrapkiewicz. – I to w zasadzie wszystko – dodaje. Niektóre elementy układu, w którym udało się złapać fotony, np. wzmacniacz obrazu, to urządzenia wykorzystujące technologię wojskową. Samo sfotografowanie pojedynczej cząstki światła to jednak nie było topowe osiągnięcie Michała i Radka. Im udało się zobaczyć moment, w którym fotony się parowały. Ale zanim o tym, warto powiedzieć trochę o samych fotonach.

Światło wprost ze światłowodu

Światło wprost ze światłowodu. Obiektyw aparatu Radka Chrapkiewicza był skierowany dokładnie w kierunku światłowodu (wyjścia) z lasera femtosekundowego. Ten laser emituje bardzo krótkie błyski światła, których długość nie przekracza 100 fs (femtosekund). Femtosekunda to jedna bilionowa część sekundy. W czasie jednej femtosekundy światło pokonuje drogę sto razy krótszą niż grubość ludzkiego włosa!

Jaki kształt? Jaki kolor?

Fotografia kojarzy nam się z odwzorowywaniem rzeczywistości. Skoro foton dał się sfotografować, można chyba zapytać, jak on wygląda. Zacznijmy od kształtu. Da się go określić? – W jednym pomiarze nie, ale robiąc wiele pomiarów, wiele zdjęć, udaje się to zrobić, choć od razu trzeba powiedzieć, że kształt fotonu nie jest stały. Może się różnić w zależności od tego w jakim otoczeniu się znajduje – tłumaczy Michał. – W naszej aparaturze obserwowaliśmy np. fotony o wydłużonych kształtach, takich trochę jak ołówek, ale udawało nam się także obserwować fotony rozseparowane, czyli takie, w których jeden foton był rozdzielony na dwie części. I to części, które znajdują się od siebie w odległości nawet centymetra – dodaje Radek. A kolor? Tutaj sprawa zaczyna się komplikować jeszcze bardziej. – Foton ma trzy cechy, które nazywamy stopniami swobody – opowiada Michał Jachura.

– Pierwszy to struktura w przestrzeni, czyli w pewnym sensie kształt. Drugi stopień swobody – spektralny – to innymi słowy kolor. Fotony mogą być czerwone, niebieskie, ale możemy mieć fotony w tak zwanej superpozycji, np. fotony białe, składające się z wielu barw dla których określony kolor ustala się dopiero w momencie pomiaru. Ten sam foton mierzony wielokrotnie może mieć różne kolory. Ostatni stopień swobody to polaryzacja, tzn. kierunek, w jakim foton drga. Jeżeli dwa fotony mają identyczne trzy stopnie swobody, nie ma żadnej możliwości, by odróżnić je od siebie – kończy Michał Jachura. Zatem wróćmy do osiągnięcia dwóch doktorantów. Fotografowali oni fotony, które dobierały się w pary. W czasie tego procesu zauważyli, że dwa różne fotony skazane są na samotność. Nawet gdy znajdą się obok siebie, „nie widzą” się i zwykle nie dobierają się w pary. Sytuacja wygląda zupełnie inaczej, gdy fotony są identyczne, to znaczy, gdy wszystkie trzy stopnie swobody dwóch cząstek są takie same. Wtedy powstają pary, które na dodatek są wyjątkowo jednomyślne. Jeden foton „idzie” zawsze tam, gdzie ten drugi. Chociaż trudno powiedzieć, który jest pierwszy, a który drugi, skoro obydwa są identyczne. Łączenie fotonów nazywa się efektem Hong-Ou-Mandela i na Wydziale Fizyki Uniwersytetu Warszawskiego po raz pierwszy na świecie udało się go sfilmować.

Quantum memory - glowing green

Układ pamięci nowej generacji do komputerów kwantowych. Zielona tuba to pamięć. Za pomocą lasera (czerwona wiązka) w atomach rubidu „zapisywana” jest informacja, która następnie może być odczytywana. Ta pamięć to także dzieło doktorantów z UW.

Nauka podstawowa

Pozostaje tylko znaleźć odpowiedź na pytanie, po co tego typu badania się robi. – Być może kiedyś uda się wyniki naszych eksperymentów wykorzystać w rozwijanych technologiach kwantowych, na razie myślimy jednak o naszych eksperymentach w kategoriach badań podstawowych – mówi Michał Jachura. – Nas bardziej niż kształt samego fotonu interesuje to, jaki kształt będzie miała para fotonów, które zaczną ze sobą interferować, zaczną się na siebie nakładać. To można wykorzystać do zupełnie nowego rodzaju mikroskopii o bardzo wysokiej rozdzielczości. – uzupełnia Radosław Chrapkiewicz.