Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Aktualności

Nagroda za mikroskop

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek, bez uszkadzania ich.

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek.

Jacques Dubochet, Joachim Frank, Richard Henderson

„for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”

Co niezwykle ważne, dzięki nagrodzonej metodzie, jesteśmy w stanie zobrazować nieuszkodzoną cząsteczkę białka w jej „naturalnym” środowisku. Uszkodzone białko nie niesie dla nas interesującej informacji. Nie jesteśmy w stanie zobaczyć jak ono reaguje, jak łączy się z innymi cząsteczkami, w skrócie, jak ono funkcjonuje w swoim naturalnym środowisku (a nie na przysłowiowym szkiełku) czyli we wnętrzu żywej komórki czy we wnętrzu poszczególnych organelli komórki. Białka to cegiełki z których wybudowane jest życie. Przy czym analogia do cegły i budynku nie jest wystarczająca. Białka nie są pasywnymi elementami naszego ciała. Białka (jako hormony) regulują czynności a nawet modyfikują struktury tkanek (tkanek, które też są zbudowane z białek). Bez poznania białek, tego jak są zbudowane, jak funkcjonują, jak łączą się w większe kompleksy, nie ma najmniejszej szansy żeby zrozumieć życie.

Trzej panowie Jacques Dubochet (Szwajcaria), Joachim Frank (USA), Richard Henderson (Wielka Brytania) stworzyli metodę by w skuteczny sposób białka badać. Nie w środowisku sztucznym, ale naturalnym. Bo tylko złapane w akcji białko daje nam się poznać. Tylko wtedy widzimy jak rzeczywiście funkcjonuje cały mechanizm, w którym bierze ono udział. Jak białko podglądnąć tak, by rzeczywiście zobaczyć jak ono funkcjonuje? Zamrozić. Ale bardzo szybko, po to by nie zdążył przebiec proces krystalizacji. Zamrażanie – jeżeli zostanie odpowiednio przeprowadzone – niczego nie uszkadza i niczego nie fałszuje. Mrożąc kolejne próbki, jesteśmy w stanie zrobić video, klatka po klatce pokazujące procesy, które przebiegają niezwykle szybko. Złożenie tych klatek w jedną całość umożliwia nie tylko prześledzenie procesu tak jak gdyby było się jego naocznym świadkiem, ale także przyjrzenie się poszczególnym jego aktom z różnej perspektywy. I tak w trójwymiarze można zobaczyć splatanie i rozplatanie długich nici białkowych. Można zobaczyć łączenie się mniejszych białek w większe kompleksy czy np. działanie receptorów białkowych.

– Te metody były przełomowe w medycynie molekularnej. Dzięki nim nie tylko możemy patrzyć na narządy i komórki. Możemy zejść głębiej, możemy śledzić jak wyglądają i działają pojedyncze cząsteczki w szczegółach, o jakim jeszcze niedawno nam się nie śniło. – powiedział Joachim Frank, jeden z laureatów tegorocznego Nobla z chemii, w rozmowie telefonicznej którą zaaranżowano w trakcie ogłaszania werdyktu.

Na zdjęciu głównym model wirusa zapalenia mózgu otrzymany dzięki technice mikroskopii krioelektronowej.

Brak komentarzy do Nagroda za mikroskop

Nobel z fizyki za fale

Prace nad wykrywaniem i analizą fal grawitacyjnych musiały kiedyś zostać uhonorowane Nagrodą Nobla. No i stało się.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów po raz kolejny będzie mówiło się o falach grawitacyjnych. Kilkanaście dni temu dzięki pracy kolaboracji LIGO/VIRGO zmarszczki przestrzeni były w czołówkach serwisów na całym świecie. Dzisiaj też będą. Z powodu Nagrody Nobla z fizyki.

Rainer Weiss, Barry C. Barich, Kip S. Thorne

„for decisive contributions to the LIGO detector and the observation of gravitational waves”

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

8 komentarzy do Nobel z fizyki za fale

Nobel za biologiczny zegar

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Jeffrey C. Hall, Michael Rosbash and Michael W. Young

for their discoveries of molecular mechanisms controlling the circadian rhythm

Ta nagroda w pewnym sensie łączy medycynę, a właściwie fizjologię z astronomią. Czasami chyba zapominamy, że życie nie funkcjonuje w oderwaniu od otoczenia. Podział szkolnych zajęć na przedmioty (biologia, fizyka, chemia,…)  nie pomaga zrozumieć złożoności tego świata. Jak to się dzieje, że czujemy się senni gdy zapada zmrok? Jak to się dzieje, że inne zwierzęta budzą się wtedy gdy zachodzi słońce? Co dzieje się w naszym organizmie gdy za krótko śpimy? I wtedy gdy podróżując samolotem, zmieniając strefy czasowe nasz biologiczny zegar totalnie się pogubi? Na te pytania bardzo długo nie było konkretnej odpowiedzi. Teraz już jest. I to – co może zadziwiać – udało się je uzyskać m.in dzięki badaniom muszek owocówek. Swoją drogą, tym małym niepozornym owadom, ktoś powinien wystawić chyba pomnik. Niewiele jest organizmów żywych, które bardziej przysłużyły się nauce. I to wielu dziecinom równocześnie. No ale to inny temat.

A wracając do pór dnia i nocy. Pór niższej temperatury i wyższej. Pór odpoczynku i aktywności. Te pory są skutkiem obrotu Ziemi wokół własnej osi. Mieliśmy (my czyli ziemskie życie) grubo ponad 3 miliardy lat na dostosowanie się do tego cyklu. Więcej, wzrastaliśmy, ewoluowaliśmy w świecie który jest cykliczny. Różnych cykli mamy wiele, ale ten który bodaj ma n nas największy wpływ to właśnie cykl dnia i nocy. Nawet najbardziej prymitywne bakterie mają biologiczny zegar. Działa na tyle dobrze, że my mamy go w zasadzie w niezmienionej wersji.

W zegarze o którym mowa nie chodzi tylko o to żeby wiedzieć kiedy mamy się położyć do łóżka. W zasadzie – w przypadku ludzi – to jest tylko skutek uboczny. Biologiczny zegar taktuje tym wszystkim co w naszym ciele dzieje się poza naszą świadomością. Metabolizmem, temperaturą ciała, produkcją i wydzielaniem hormonów a także aktywnością seksualną, cyklami życiowymi czy nawet poczuciem głodu i sytości. Tegoroczni laureaci Nagrody Nobla zostali uhonorowani za opisanie tego jak ten skomplikowany system działa.

Już kilkaset lat temu zauważono, że rośliny pozbawione dostępu światła zachowują się tak, jak gdyby to światło cały czas okresowo do nich docierało. Tak jak gdyby kiedyś nastawiony (nakręcony) zegar teraz tykał i działał niezależnie od tego czy światło pada na liście czy też nie. Podobnie zachowują się zwierzęta, w tym ludzie. To dlatego mamy kłopoty z zaśnięciem i koncentracją gdy szybko zmienimy strefę czasową. Tych kłopotów by nie było, gdyby nasz wewnętrzny zegar automatycznie dostosowywał się do pory dnia i nocy.

W latach 70tych XX wieku zaczęto poszukiwać źródeł (mechanizmu) tego biologicznego zegara. Najpierw – a jakże – u muszek owocówek. Poszukiwano i znaleziono – w największym skrócie – mechanizmy w którym w zależności od pory dnia (natężenia światła) produkowane są specyficzne białka (nazwane PER). Te gromadzą się w ciągu nocy, a rozpadają się w ciągu dnia. Badacze odkryli u muszek gen, który gdy zostanie uszkodzony zaburza rytm dobowy. Gen został wyizolowany dopiero w połowie lat 80tych XX wieku. To w nim był przepis na produkcję wspomnianego wcześniej białka PER. Tego, które gromadzi się w ciagu nocy a rozpada w ciagu dnia. Dziesięć lat później, w połowie lat 90tych odkryto drugi gen kodujący „zegarowe” białko. I gen i białko nazwano TIM. Białka TIM i PER łączą się z sobą wtedy gdy noc przechodzi w dzień. To sygnał żeby komórka wstrzymała produkcję biała PER. Mamy wiec produkcję białka i wiemy co powoduje że wstrzymywana jest jego produkcja. A jaki czynnik powoduje, że produkcja PER znowu rusza z kopyta? Skąd komórka wie, że dzień zamienia się w noc? Pod koniec lat 90tych odkryto trzeci gen odpowiedzialny za tykanie biologicznego zegara. gen DBT. I tak zamyka się 24godzinny cykl.

Zegar tyka nawet wtedy gdy przez jakiś czas organizm odcięty jest od światła. Z czasem, zegar się jednak rozregulowuje. U roślin ten okres swego rodzaju bezwładności wynosi kilka dni. U człowieka od 2-3 dni (stąd niektórzy są w stanie dość łatwo przestawiać się na pracę w nocy) do kilkudziesięciu (dlatego istnieją osoby, które nie są w stanie przyzwyczaić się do zmiany czasu o godzinę). Gdy zegar się zatrze, nie staje w miejscu, tylko zaczyna odmierzać czas nieprawidłowo. Np.  u niektórych wydłużając dobę dwukrotnie a u innych skracając o kilka godzin. Wiemy to, bo kilku śmiałków w ramach eksperymentu zamknęło się w kompletnych ciemnościach na czas od kilkunastu do kilkudziesięciu dni. W naszym przypadku sercem zegara nie jest jednak pojedyncza komórka, tylko szyszynka, czyli ta cześć mózgu, która „widzi” czy jest dzień czy noc. To ona daje sygnał, który jest podchwytywany przez miliardy drobnych zegarków już na poziomie komórkowym. Gdyby tykały jak zegarki ze wskazówkami, wydawalibyśmy dźwięki jak zakład zegarmistrza.

2 komentarze do Nobel za biologiczny zegar

Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę.

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę.

Ziemia w swoim ruchu dookoła Słońca napotyka co roku w sierpniu rój meteorów zwanych Perseidami. Rój meteorów to kawałki komety, której lodowe jądro stopiło się kiedyś zbliżając do Słońca. Pozostawiła ona wtedy w przestrzeni kosmicznej po sobie ślad w postaci pyłu i małych okruchów skalnych. Ziemia krążąc wokół Słońca przechodzi przez taką strugę i na niebie widzimy meteory. Gdy jest ich dużo, mamy do czynienia z tzw. deszczem meteorów. Podczas takiego deszczu Leonidów (fragmentów komety Tempel-Tuttle występujących w połowie listopada każdego roku) w 1833 roku naliczono aż 200 000 „spadających gwiazd” na godzinę. Perseidy są pozostałością po komecie Swift-Tuttle, a największą ich liczbę – bo aż 300 na godzinę – można zauważyć od 10 do 12 sierpnia. To, że w czasie przechodzenia Ziemi przez rój meteorów widzimy wiele „spadających gwiazd” wcale nie oznacza, że poszczególne bryłki w pasie pozostawionym kiedyś przez kometę znajdują się blisko siebie. Szacuje się, że w czasie maksimum natężenia roju Perseid najmniejsze bryłki bywają od siebie oddalone nawet o 200 km.

Meteory widoczne są jako „spadające gwiazdy”, dzięki grubej, ziemskiej atmosferze. Drobne cząstki pyłu i większe okruchy skalne wpadając z dużą prędkością (od 15 do 75 km/s) w ziemską atmosferę, ocierają się i zderzają z cząsteczkami powietrza, a to z kolei powoduje, że ich powierzchnia się rozgrzewa. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia meteoru zaczyna się topić i wrzeć (bryłka skalna ma wtedy ok. 3000 st. Celsjusza). Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza i w ten sposób widzimy zjawisko świetlne „spadającej gwiazdy”. Można więc powiedzieć, że to co obserwujemy na niebie nie jest świeceniem rozgrzanej bryłki, tylko rozgrzanego dookoła niej powietrza. Aby spadający meteor zobaczyć gołym okiem (w nocy), wystarczy, że ma on masę ok. 0,01 grama i jest wielkości 1 mm. Okruch ważący 1 gram, na niebie rozbłyska się jaśniej niż którakolwiek gwiazda. Z bardziej szczegółowych badań wynika, że meteory zaczynają „świecić” na wysokości nawet 130 km a „gasną” na wysokości 75 km nad Ziemią.

W czasie deszczu meteorów nic nam na Ziemi nie grozi. Nie trzeba się też nigdzie chować, gdyż znakomita ich większość spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Musimy się przyzwyczaić, że codziennością i niejako częścią naszego Świata jest bombardowanie nas przez mniejsze meteoryty. Obok tych, których zupełnie nie widać, stosunkowo dużo jest też takich, które rozbłyskują tylko na ułamek sekundy. Gdy Ziemia nie przechodzi przez żaden z rojów w bezksiężycową noc pojedynczy obserwator może naliczyć 10 „spadających gwiazd” na godzinę. Trafiają się jednak, – choć rzadko – i takie, meteory które świecą dłużej. Te największe mogą powodować nawet efekty akustyczne podobne do grzmotu błyskawicy. Meteory, które są na tyle duże, że nie spalą się całkowicie w ziemskiej atmosferze i spadną nam pod nogi, to tzw. meteoryty. Największe meteoryty to bolidy, i mimo, że kolizje z nimi są bardzo rzadkie, liczne kratery na powierzchni Ziemi świadczą o wielu takich spotkaniach w przeszłości. Największym dotychczas znalezionym meteorytem był meteoryt Hoba. Waży on ok. 60 ton i nadal znajduje się w miejscu swojego upadku w Namibii (Afryka Południowo-zachodnia). Mimo, że takie zderzenie dla naszej planety może zakończyć się katastrofą, są one na tyle rzadkie, że nie należy się ich obawiać.

W określonych porach roku orbita Ziemi przecina orbity, po których poruszają się resztki komet. Zjawisko to na Ziemi obserwuje się jako rój (albo deszcz) meteorów. Corocznie takich rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne na obydwu. Jednym z takich rojów jest widoczny jedynie na półkuli północnej rój Perseid. Ponieważ obserwacje meteorów nie wymaga kosztownych urządzeń, ani specjalnej wytrwałości, a jedynie pogody , biorą w nich udział bardzo często amatorzy. Obserwatorowi na Ziemi wydaje się, że meteory z roju rozbiegają się po niebie we wszystkie strony, tak jakby wychodziły z jednego punktu. Jest to tylko złudzenie, gdyż meteory poruszają się po torach równoległych. Roje meteorów biorą swoje nazwy od gwiazdo zbiorów z których „wylatują”. Jeżeli chodzi o Perseidy tym miejscem jest gwiazdozbiór Perseusza a konkretnie okolice gwiazdy [eta]Per (Miram).

Jak zatem powinno się przygotować do obserwacji meteorytów ? Podstawowym warunkiem obserwacji jest dobra pogoda. Niebo powinno być bezchmurne, ale nie całe. Dobrze byłoby, gdyby noc była bezksiężycowa. Koniecznie trzeba też swoje obserwacje prowadzić w oddali od wszelkich sztucznych źródeł światła (np. miast czy oświetlonych ulic). Przed obserwacjami wskazane jest także ok. 30 minutowe „przyzwyczajenie” oczu do ciemności. I sprawa chyba najważniejsza. Należy przygotować sobie zestaw życzeń. Pragnienie wypowiedziane w czasie spadania gwiazdy zawsze się spełnia.

2 komentarze do Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Jak to się zaczęło?

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

To „manipulowanie” w równaniach  Ogólnej Teorii Względności polegało na dopisaniu do nich dodatkowego członu, tak zwanej stałej kosmologicznej. To ona, na kartce papieru, wszechświat dynamiczny „zamieniała” na statyczny. I prawie wszyscy byli zadowoleni. Prawie. Jedną z osób, które podważały koncepcję wszechświata stacjonarnego był katolicki ksiądz, Georges Lemaitre.

Uparty jak Einstein

Koncepcje Lemaitre’a (swoją teorię nazwał Hipotezą Pierwotnego Atomu) traktowano z pobłażaniem. Lemaitre nie był fizykiem, tylko matematykiem. Gdy spotkał się z Einsteinem (by przekonać go do swojej koncepcji początku wszechświata), ten stwierdził, że Lemaitrowi brakuje wiedzy z zakresu fizyki. To co mówił Lemaitr było w zasadniczej sprzeczności z tym, co powszechnie w jego czasach sądzono. Lemaitr często spotykał się z argumentem, że jego hipoteza jest błędna, bo nawet z rachunków Alberta Einsteina wynika, że wszechświat jest statyczny. No tak, ale z rachunków… nieco „podkręconych”.

Jeszcze na początku lat 20tych XX wieku, za wyjątkiem garstki badaczy spoza głównego nurtu, uważano, że wszechświat jest stały. I wtedy do największego ówcześnie ośrodka astronomicznego, do obserwatorium na górze Wilsona w Kalifornii przyjechał Edwin Hubble. Był już znany w środowisku astronomów jako niepokorny badacz, który ma dosyć oryginalne poglądy. Hubble’a twierdził bowiem, że niewyraźne obłoczki pomiędzy gwiazdami, które obserwowano przez działające już wtedy niemal na całym świecie teleskopy, to nie większe skupiska pyłu międzygwiazdowego czy bliżej nieokreślone mgławice, tylko osobne galaktyki. Pogląd ten był nawet bardziej niż oryginalny, bo powszechnie uważano wtedy, że we wszechświecie jest tylko jedna galaktyka. Galaktyka Drogi Mlecznej.

Hubble odkrywca

Jednym z pierwszych bardzo wyraźnych zdjęć galaktyki jakie Hubbleowi udało się zrobić było zdjęcie galaktyki Andromedy. Świat, nie tylko naukowy był w szoku, gdy Hubbleowi udało się obliczyć (na podstawie pomiaru jasność gwiazd), że najbliższa galaktyka znajduje się ponad milion lat świetlnych od nas. To jedno obliczenie, ta jedna obserwacja „rozszerzyło wszechświat” o miliony, miliardy razy. Hubble odmienił nasze rozumienie wszechświata. Hubble pokazał, że wszechświat to ogromny kosmos, a nasza galaktyka jest niepozornym okruszkiem.

Ale na tym się nie skończyło. OK., wszechświat może i jest o miliardy razy większy niż nam się wydawało, ale czy jest stacjonarny czy dynamiczny – pytano. Kilka lat obserwacji dalszych i bliższych galaktyk pozwoliło Hubble’owi na sformułowanie prawa, które przewróciło do góry nogami wiedzę na temat wszechświata. Analizując światło galaktyk, astronom zauważył, że one się poruszają. Odkrył że czym odleglejsza galaktyka, tym szybciej się od nas oddala. Jeżeli wszystkie galaktyki się od nas oddalają, jeżeli wszystkie oddalają się od siebie, wszechświat się rozszerza. Innego wytłumaczenia nie ma. Łatwo to można sobie wyobrazić. Gdy namalujemy na powierzchni słabo napompowanego balonika kilka kropek a następnie zaczniemy go nadmuchiwać (rozszerzać), kropki zaczną się od siebie oddalać.

Lemetre tryumfuje

W 1931 roku spotkało się trzech badaczy, którzy są chyba głównymi bohaterami tej historii. Hubble, Einstein i Lemetre. To w czasie tego spotkania powstały podstawy współczesnej kosmologii. To wtedy Einstein przekonał się do koncepcji wszechświata dynamicznego. To wtedy zrozumiał swój błąd. I to wtedy stałą kosmologiczną nazwał „największą pomyłką życia”. Trudno mu się dziwić. Wiele lat wcześniej, gdy pracował nad Ogólną Teorią Względności matematyka, jak na tacy podała mu prawdziwy obraz wszechświata. On jednak nie uwierzył.

Jeżeli galaktyki oddalają się od siebie, znaczy, że wczoraj były bliżej siebie, niż są dzisiaj. A rok temu? A milion lat temu? To co Hubble zaobserwował i to co wynikało z równań Ogólnej Teorii Względności (przed tym, gdy Einstein dodał do nich stało kosmologiczną), potwierdzało koncepcję jaką od początku forsował Georges Lemaitre. Wszechświat był kiedyś skupiony w jednym, nieskończenie gęstym punkcie. Lemaitre ten punkt nazwał pierwotnym atomem. W 1947 roku amerykański kosmolog pochodzenia rosyjskiego George Gamow opracował matematyczne podstawy koncepcji Lemaitra. Całość została ochrzczona Teorią Wielkiego Wybuchu (ang. Big Bang).

Obserwacje Hubble’a nie wszystkich jednak przekonały. Nie chodziło o to, że w nie nie uwierzono, ale uważano, że wyciągnięto z nich nieprawdziwe wnioski. W 1948 roku powstała Teoria Stanu Stacjonarnego. W największym skrócie mówi ona, że co prawda galaktyki się rozszerzają, ale w pustych przestrzeniach pomiędzy nimi cały czas powstaje materia.  W ten sposób próbowano pogodzić ogień i wodę. Wszystko się rozszerza, ale gęstość wszechświata pozostaje stała, bo nieustannie produkowana jest nowa materia. Jak to się dzieje i gdzie ona powstaje? To były pytania bez odpowiedzi.

Gamow przewiduje

To wtedy nastąpił symboliczny kres koncepcji stanu stacjonarnego. Pogrzeb wizji wszechświata niezmiennego, statycznego.

Promieniowanie reliktowe to echo Wielkiego Wybuchu i jedyny sposób by zajrzeć w historię tak odległą. Promieniowanie, które teraz potrafimy rejestrować to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu. Gdy skonstruowano odpowiednie anteny, w którąkolwiek ze stron je kierowano, zawsze rejestrowano podobny szum. Hałas radiowy nie ustawał. Tak było na powierzchni Ziemi. W 1989 roku w przestrzeń kosmiczną wysłano satelitę COBE (Cosmic Background Explorer). I potwierdziło się to co przewidywał Gamow. Wszechświat jest wypełniony promieniowaniem, poświatą Wielkiego Wybuchu. COBE zarejestrował coś jeszcze. Wspomniane promieniowanie nie jest jednorodne. Te niewielkie różnice odpowiadają strukturom, które formowały się we wczesnym wszechświecie.  Chłodniejsze rejony (na większości z map zaznaczane kolorem niebieskim) to miejsca gdzie materia w niemowlęcym okresie życia wszechświata skupiała się tworząc galaktyki. W połowie 2001 roku w przestrzeń została wystrzelona sonda WMAP. Następca COBE. Z większą dokładnością, potwierdziła to, co zmierzyła misja COBE.

 

Jak w ciągu 90 lat zmienił się wszechświat?

  • Rok 1917 – Albert Einstein do równań Ogólnej Teorii Względności wprowadza stałą kosmologiczną. „Dzięki” niej wszechświat staje się statyczny.
  • Rok 1923 – Edwin Hubble odkrył, że Droga Mleczna to zaledwie mały wycinek Wszechświata.
  • Rok 1927 – Belgijski ksiądz i matematyk Georges Lemaitre prezentuje Hipotezę Pierwotnego Atomu, która później została ( w założeniu złośliwie) ochrzczona jako Big Bang.
  • Rok 1931 – Edwin Hubble zaobserwował, że galaktyki oddalają się od Ziemi tym szybciej, im dalej się znajdują. Wszechświat jest jednak dynamiczny. Einstein wprowadzenie stałej kosmologicznej nazwał „największą pomyłką życia”.
  • Rok 1948 – George Gamow stwierdza, że jeżeli Wielki Wybuch rzeczywiście miał miejsce, kosmos musi być wypełniony tzw. mikrofalowym promieniowaniem tła.
  • Rok 1964 – zarejestrowanie mikrofalowego promieniowania tła, upadek konkurencyjnej do Wielkiego Wybuchu koncepcji wszechświata stacjonarnego.
  • Lata 70te XX wieku – dokładna analiza rotacji galaktyk budzi wątpliwości co do ilości materii w nich zawartych. Bez istnienia ciemnej materii, nie można wytłumaczyć budowy wszechświata. Dalsze prace potwierdzają, że ciemnej materii jest wielokrotnie więcej niż tej „zwykłej”, widzialnej.
  • Rok 1989 – wystrzelenie na orbitę okołoziemską pierwszego satelity zbudowanego wyłącznie do badań kosmologicznych. Zadaniem COBE (Cosmic Background Explorer) było wykonanie pomiarów kosmicznego promieniowania tła.
  • Rok 1990 – na orbitę okołoziemską wystrzelony zostaje teleskop Hubble’a – jedno z najważniejszych narzędzi współczesnej nauki służące do badania losów wszechświata.
  • Rok 2003 – Prezentacja obrazu mikrofalowego promieniowania tła całego wszechświata wykonanego przez satelitę WMAP (doskonalszego następcę misji COBE). – „ Ten obraz jest jednym z najważniejszych rezultatów naukowych w historii ludzkości” – powiedział rzecznik NASA.

A po więcej ciekawych informacji o Einsteinie odsyłam do nowego serialu National Geographic pt. „Geniusz”. Premiera 23 kwietnia o 21.30.

Brak komentarzy do Jak to się zaczęło?

Uważaj jak chodzisz

Ze sposobu w jaki się poruszamy, naukowcy potrafią wyciągnąć zadziwiającą ilość informacji. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala.

Ze sposobu w jaki się poruszamy, naukowcy potrafią wyciągnąć zadziwiającą ilość informacji. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala.

Amerykańska firma Visionics opracowała system który potrafi analizować twarze. Zainstalowany w centrum monitoringu miejskiego (czy lotniskowego) „wyławia” z tłumu przechodniów osoby które ma w swojej bazie danych. Rozpoznaje je po rozstawie oczu, kształcie ust czy wysokości czoła. Czy istnieje lepszy sposób na znalezienie osoby poszukiwanej ?

Chód świetlnych punkcików

Oprogramowanie Visionics, ale także aplikacje wielu innych firm zajmujących się szeroko rozumianym bezpieczeństwem, potrafi znacznie więcej. Automatycznie wykrywa osoby, po… sposobie chodzenia. Może np. z tłumu wyłowić osobę, która pod kurtką niesie coś ciężkiego. Jak to robi ? Za dogłębne przeanalizowanie chodu kobiet i mężczyzn zabrali się badacze z Southern Cross Univeristy w Coffs Harbour (w Australii). Wyniki ich badań opublikował tygodnik „New Scientist” oraz czasopismo „Current Biology” (vol 18, R728-R729). Czy kobiety i mężczyźni poruszają się inaczej ? To oczywiste, ale jak matematycznie opisać i zmierzyć te różnice ? Najpierw naukowcy sfilmowali chód 50 kobiet i 50 mężczyzn, a następnie, komputerowo każdy staw (biodrowy, barkowy, łokciowy,…) badanej osoby zaznaczyli jako świecący punkt. Z filmu przedstawiającego poruszającą się postać powstała animacja poruszających się punktów świetlnych, a równocześnie biblioteka chodów ludzkich. Zbiór sposobów w jakich poruszają się ludzie.

Okazało się, że nawet powierzchowna analiza pozwala wyłapać charakterystyczne cechy męskiego i żeńskiego chodu. To ważne, bo jeżeli problem da się opisać matematycznie, jest też nadzieja, że uda się go przełożyć na język rozumiany przez komputery. Po sposobie chodzenia można też określić wiek obserwowanego. Głębsza analiza pozwala powiedzieć w jakim jest nastroju i czy jest zmęczony, jakie ma wady postawy i czy dźwiga coś ciężkiego. Stosunkowo łatwo jest też określić czy obserwowany kuleje czy tylko udaje (to ważne wtedy gdy ktoś chciałby zmylić system monitoringu). Te wszystkie informacje są niezwykle ważne dla służb, która zajmują się bezpieczeństwem, ale mogą być też wykorzystywane przez psychologów.

Odchodzi czy przychodzi

Szef grupy badaczy Rick van der Zwan chód najbardziej kobiecy porównał do poruszania się koni w czasie parady. Zauważył, że panie podnoszą wysoko kolana a stopy stawiają jedna za drugą w tej samej linii. Jak zatem wygląda chód typowo męski ? Wg autorów badań można go porównać do toczenia się.

Przy okazji badań badacze zauważyli bardzo ciekawą prawidłowość. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala. Dlaczego tak się dzieje ? Trudno powiedzieć, ale autorzy spekulują, że odpowiedzi należy szukać w ewolucji. – Gdy zauważymy mężczyznę i nie mamy pewności czy się do nas zbliża czy oddala, lepiej założyć to pierwsze – powiedział Zwan. Dlaczego ? Bo naszym dalekim przodkom bezpieczniej było w takiej sytuacji przygotować się do ucieczki albo konfrontacji niż później żałować. Dlaczego w takim razie chód kobiecy kojarzy nam się z oddalającą postacią ? Choć to znowu przypuszczenie, autorzy także w tym przypadku wskazują na ewolucję. „Kiedy jest się małym dzieckiem i nie do końca jest się pewnym czy mama stoi przodem do nas czy odchodzi, prawdopodobnie bezpieczniej jest założyć, że jednak odchodzi, aby być gotowym do pójścia za nią” – tłumaczy van der Zwan.

Kto zwraca uwagę na chód ? Modelki, aktorzy,… Okazuje się, że nawet ze stawiania nogi za nogą specjaliści potrafią wyciągnąć zaskakujące wnioski. Wnioski dotyczące nas dzisiaj i nas przed wieloma wiekami.

Tomasz Rożek

Brak komentarzy do Uważaj jak chodzisz

Smog? Bez spiny, jest super!

Na portalu TwojaPogoda.pl pojawił się kilka dni temu artykuł pt. „Histeria z powodu smogu. Kto ją wywołuje i dlaczego?” No właśnie. Kto histeryzuje? Po co? I kto na tym zyskuje?

Na portalu TwojaPogoda.pl pojawił się kilka dni temu artykuł pt. „Histeria z powodu smogu. Kto ją wywołuje i dlaczego?” No właśnie. Kto histeryzuje? Po co? I kto na tym zyskuje?

Pod artykułem nie podpisał się autor, wiec rozumiem, że to tekst redakcyjny. Dziwię się, że portal, który sam wielokrotnie ostrzegał przed powietrzem złej jakości (np. „Rekordowy smog spowija Polskę. Trujący każdy wdech” z 2017-01-08), sam wielokrotnie opisywał tragiczne skutki oddychania zatrutym powietrzem (np. „Smog w stolicy Iranu zabija tysiące ludzi” z 2007-08-03), dzisiaj postanowił odwrócić smoga ogonem.

Zrzut ekranu 2017-02-19 o 18_Fotora

Tekst można streścić do następujących punktów:

  1. Kiedyś było gorzej.
  2. Na Zachodzie wcale nie jest tak czysto.
  3. Ekologiczne lobby jest na pasku producentów pieców.
  4. Smogu nie trzeba się obawiać.

No to po kolei.

Ad1. Kiedyś było gorzej. Tak, kiedyś było znacznie gorzej. Choć to dzisiaj jest więcej rakotwórczych dioksyn i furanów niż kiedyś. Ale nawet gdyby dzisiaj stężenia wszystkich szkodliwych substancji były niższe niż powiedzmy 20 lat temu, czy to automatycznie oznacza że jest super? No nie. Trzeba spojrzeć w statystyki i w pomiary. I okazuje się, że super nie jest. Że jest źle. I to bardzo. To, że niektórzy obudzili się dopiero wczoraj nie oznacza że kiedyś smogu nie było. Oznacza tylko… że niektórzy obudzili się wczoraj. Ani mniej, ani więcej. Organizacje ekologiczne od wielu lat mówią o zatrutym powietrzu. Tyle tylko, że dotychczas niewielu tego słuchało. W tym roku media informują o smogu częściej niż w poprzednich latach. Dlaczego? Dlatego, że Internet o tym więcej pisze, bo świadomość ludzi wzrosła. To system naczyń połączonych. Odczuwam osobistą satysfakcje, że i ja w budzeniu tej świadomości miałem swój udział publikując prosty pokaz z wacikiem i odkurzaczem. Zrobiłem to w pierwszych dniach stycznia. Choć powietrze było dużo gorsze w listopadzie i grudniu, przeważająca większość materiałów w mediach została zrobiona dopiero w styczniu. Do dzisiaj na różnych platformach moje video zobaczyło ponad 2 mln ludzi. Od tego czasu ten sam pokaz był powtarzany kilkukrotnie we wszystkich serwisach informacyjnych głównych stacji telewizyjnych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad2. Na Zachodzie wcale nie jest tak czysto. Szczerze. Co mnie obchodzi jakie jest powietrze w Londynie, Brukseli czy Paryżu? Oddycham powietrzem w Warszawie albo na Śląsku. I to mnie obchodzi. Argumentowanie, że nie ma co panikować, bo za granicą nie jest wcale tak zielono jak mogłoby się wydawać, jest poniżej poziomu piwnicy.

Ale, podejmując wyzwanie… Jakość powietrza w stolicach zachodniej Europy jest dużo lepsza niż w miastach Polski. Znane są zestawienia mówiące, że to nasze miasta są w czołówce najbrudniejszych miast kontynentu. To, że w Niemczech spala się więcej węgla nie oznacza, że ten węgiel w większym stopniu zanieczyszcza powietrze. Bo,

  • w Niemczech węgiel nie jest palony w prywatnych piecach tylko w elektrowniach i elektrociepłowniach, a te zakłady (także w Polsce) mają filtry i nie dokładają się do smogu. Tymczasem w Polsce sporo węgla spala się w prywatnych piecach.
  • W Polsce nie obowiązują żadne normy dotyczące jakości węgla. W efekcie to u nas spala się węgiel wydobywany np. w Czechach, który tam nie mógłby zostać sprzedany.

Już wiesz redakcjo dlaczego argument o ilości spalanego w Niemczech i Polsce węgla jest jak kulą w płot?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad3. Ekologiczne lobby jest na pasku producentów pieców. Gdy pisałem o elektrowniach jądrowych (uważam, że w Polsce powinny powstać), słyszałem, że jestem przeciwko górnictwu na pasku lobby jądrowego. Teraz słyszę, że opłaca mnie lobby producentów węglowych pieców, bo piszę i alarmuję na temat złej jakości powietrza. Robię to zresztą od wielu lat każdego roku w czasie sezonu grzewczego. W międzyczasie byłem na pasku przemysłu farmaceutycznego (tak, uważam, że szczepionki to jedno z największych osiągnieć ludzkości), oraz przemysłu biotechnologicznego (tak, nie znajduję naukowych dowodów przeciwko GMO).

Zarzucenie komuś, że jest skorumpowany jest bajecznie proste, ale intelektualnie dość małe. Redakcja TwojaPogoda.pl naprawdę wierzy, że ci, którzy ostrzegają przed złej jakości powietrzem są kupieni przez producentów nowoczesnych pieców? Dodam tylko, że po to by ulżyć powietrzu nie trzeba koniecznie pieca wymieniać. Dużo da przeczyszczenie przewodów kominowych. Sporo da odczyszczenie przed sezonem grzewczym, a nawet w trakcie jego trwania samego pieca i odpowiedni sposób składania ognia w piecu. Te czynności nic nie kosztują, a pozwalają oszczędzić pieniądze bo podnoszą sprawność pieca i instalacji. Nie jest wiec prawdą, że smog można zlikwidować tylko wymieniając stary piec na nowiutki. Jest wiele innych rozwiązań, a niektóre z nich przynoszą oszczędności. No ale tego z tekstu o histerii smogowej się nie dowiemy. Nie możemy się dowiedzieć, bo to złamałoby linię argumentacji redakcji, że ci, którzy piszą i mówią o smogu są w kieszeni producentów drogich pieców.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad4. Smogu nie trzeba się obawiać. Redakcja portalu twierdzi, że cała ta histeria ze smogiem została „opracowana przez niektóre organizacje” i „wcale nie chodzi [w niej]o ochronę naszego zdrowia”.

Był taki czas, kiedy uważano, że zdrowe jest naświetlanie się promieniami jonizującymi. I choć w pewnym momencie stało się jasne, że te mogą być źródłem raka, wiele osób dalej się naświetlało. Był taki czas, gdy twierdzono, że zdrowe jest palenie papierosów. Firmy tytoniowe przedstawiały opracowania które tego dowodziły. Przez lata dowodzono też, że ołów z benzyny nie ma nic wspólnego ze złym stanem zdrowia ludzi wdychających spaliny albo mieszkających niedaleko szlaków komunikacyjnych. Dzisiaj benzyny są bezołowiowe, na paczkach papierosów są ostrzeżenia o nowotworach spowodowanych paleniem a źródła promieniowania jonizującego są zamykane w pancernych szafach żeby nie wpadły w niepowołane ręce.

Nie ma w naszym ciele organu czy układu, który nie byłby narażony z powodu powietrza złej jakości. Są na to tysiące naukowych dowodów. Serce, płuca, ale także mózg. Układ hormonalny, układ nerwowy, krwionośny… Tam gdzie powietrze jest bardziej zanieczyszczone jest mniejsza masa urodzeniowa dzieci, a ludzie żyją krócej. Ocenia się że w Polsce każdego roku umiera z powodu powietrza złej jakości ponad 40 tys. osób. Szczególnie narażeni są chorzy (np. na astmę), osoby starsze i dzieci. „Smogu nie trzeba się obawiać”? W tekście z TwojaPogoda.pl znalazł się właśnie taki śródtytuł. Trzeba, i to bardzo. Dobrze, że coraz lepiej zdajemy sobie z tego sprawę. To, że są ludzie czy firmy, które na rosnącej świadomości robią pieniądze, to naturalne i oczywiste. Są firmy, które robią pieniądze na produkcji samochodowych pasów bezpieczeństwa i systemów ABS, choć gdy je wprowadzano mówiło się że to tylko sposób na wyciąganie pieniędzy z kieszeni klienta. Tam gdzie jest popyt tam pojawia się i podaż. Od nas, klientów, zależy czy damy się nabierać na tanie  sztuczki (np. maseczki) czy zdecydujemy się na rozwiązania, które problem rozwiązują choć w części.

Zanim zakończę, chciałbym jeszcze wyjaśnić trzy kwestie.

  1. Węgiel nie jest źródłem smogu. Źródłem smogu jest palenie węglem niskiej jakości i śmieciami w piecach, które nie są odpowiednio przygotowane do eksploatacji. Takie są fakty. Mówienie więc, że walka ze smogiem to walka z węglem jest bzdurą i niepotrzebnie rozgrzewa emocje. W Polsce kilka milionów ludzi żyje dzięki przemysłowi wydobywczemu. Ten przemysł jest przestarzały i zżerany wewnętrznymi problemami. Nie da się jednak (z wielu różnych powodów) po prostu wszystkich kopalń zamknąć. Węgiel może być czarnym złotem o ile wykorzystamy go w sposób nowoczesny i innowacyjny. Np. gazując pod ziemią, budując instalacje niskoemisyjne czy zeroemisyjne. Podkreślanie, że walka o czyste powietrze to walka z węglem, powoduje u milionów ludzi żyjących z wydobycia węgla (i przemysłu który z tym jest związany) automatyczną niechęć do działań mających na celu poprawę jakości powietrza.
  1. Wiarygodność pomiaru. „Jeśli na jednej ulicy pomiary wskazują na duże skażenie powietrza, wcale nie oznacza to, że w Twojej okolicy jest równie niebezpiecznie.” Nieprawdą jest, co pisze redakcja TwojaPogoda.pl, że pomiaru z jednej stacji nie można stosować do całego miasta. W przeciwieństwie do temperatury, która rzeczywiście może się szybko zmieniać, zanieczyszczenie powietrza jest dość jednorodne na większym obszarze. W Polsce nie mamy niedoboru stacji pomiarowych. A na tak duże miasto jak np. Warszawa wystarczy ich kilka, by wiarygodnie przedstawić jakość powietrza w mieście. Nawet jeżeli na danym obszarze znajdują się pojedyncze punkty pomiarowe, odpowiednie algorytmy (biorące pod uwagę wiele zmiennych) wyliczają stężenie prawdopodobne. Jest ono (a robi się takie testy) bardzo bliskie stężeniom rzeczywistym. Warto rzeczywiście zwrócić uwagę, by dane na których się opieramy (w tym dane w aplikacjach w telefonach komórkowych) pochodziły z oficjalnych stacji, a nie były zniekształcane przez mierniki prywatne albo komercyjne, których dokładność jest zła, albo bardzo zła.
  1. Skarga na Polskę. Niektóre organizacje ekologiczne za zanieczyszczone powietrze postanowiły złożyć na Polskę skargę do Komisji Europejskiej. Taki ruch uważam za totalnie antyskuteczny. Smogu nie pozbędziemy się (nie zminimalizujemy) dekretami rządu czy uchwałami samorządu, bo smog powstaje nie w dużych zakładach przemysłowych tylko w naszych prywatnych kominach i rurach wydechowych. Komisja Europejska może nałożyć na nas karę i co? I to nas, Polaków, przekona do zmiany głupich i szkodliwych przyzwyczajeń? Myślę, że raczej utwierdzi w przekonaniu, że Bruksela znowu nas atakuje. I z całą pewnością atakuje dlatego, że chce położyć łapę na naszym węglu. Składając skargę do Komisji Europejskiej niektóre organizacje ekologiczne właśnie dały do ręki argument tym, którzy ze smogiem nie mają zamiaru walczyć. Sorry, taki mamy klimat. 

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do Smog? Bez spiny, jest super!

Oddychamy trucizną!!!

W pewnym miasteczku pod Krakowem zanieczyszczenie powietrza w sylwestrową noc przekroczyło poziom zanieczyszczenie powietrza w Pekinie. O sprawie napisał nawet The Financial Times. Na 50 najbardziej zanieczyszczonych miast Europy, 33 leżą w Polsce!

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Burmistrz Skały – bo to o to miasto chodzi – tłumaczył, że jakość powietrza w jego miejscowości przekraczała unijne limity 20krotnie tylko przez kilka godzin. Marne pocieszenie. W Polsce mamy 33 miasta z 50 najbardziej zanieczyszczonych miast w Europie. 33 na 50!

Najgorsi w Unii

Dowodów na to, że zatrute powietrze powoduje wiele groźnych chorób jest tak wiele, że aż trudno zrozumieć dlaczego wciąż tak mało energii poświęcamy jego ochronie. Z badań ankietowych wynika, że aż 81 proc. pytanych nie uważa zanieczyszczenia powietrza za problem miejsca w którym mieszka. Fakty są jednak takie, że poziom zanieczyszczenia powietrza w Polsce jest najwyższym w Unii Europejskiej. Pod względem stężenia pyłu zawieszonego PM10 wywołującego m.in. astmę, alergię i niewydolność układu oddechowego w całej Europie gorsza sytuacja niż w Polsce jest tylko w niektórych częściach Bułgarii. W przypadku pyłu PM2,5 stężenie w polskim powietrzu jest najwyższe spośród wszystkich krajów w Europie, które dostarczyły dane. Podobnie jest ze stężeniem rakotwórczego benzopirenu. Gdy Polskę podzielono na 46 stref w których badano jakość powietrza, okazało się, że aż w 42 poziom benzopirenu był przekroczony. Wczytywanie się w statystyki, liczby, tabelki i wykresy może przyprawić o ból głowy. Okazuje się bowiem, że wśród 10 europejskich miast z najwyższym stężeniem pyłów zawieszonych, aż 6 to miasta polskie; Kraków, Nowy Sącz, Gliwice, Zabrze, Sosnowiec i Katowice. Są miasta w których ponad połowa dni w roku ma przekroczone normy jakości powietrza. Kraków jest trzecim najbardziej zanieczyszczonym miastem europejskim. Brudne powietrze to nie tylko takie w którym przekroczone są normy stężania pyłów zawieszonych czy wielopierścieniowych węglowodorów aromatycznych (WWA), w tym benzopirenu (te powstają w wyniku niecałkowitego spalania np. drewna, śmieci czy paliw samochodowych). My i nasze dzieci (także te, które jeszcze się nie urodziły) oddychamy tlenkami azotu (główne źródło to spaliny samochodowe), tlenkami siarki (spalanie paliw kopalnych), przynajmniej kilkoma metalami ciężkimi np. kadmem, rtęcią, ołowiem, a także tlenkiem węgla.

Piece i samochody

Źródła poszczególnych zanieczyszczeń występujących w atmosferze są różne, ale w brew pozorom nie są one związane z przemysłem. Głównym ich źródłem jesteśmy my sami, a konkretnie indywidualne ogrzewanie domów i mieszkań oraz transport drogowy. Ponad 49 proc. gospodarstw domowych ma własne piece centralnego ogrzewania. Samo to nie byłoby problemem gdyby nie fakt, że przeważająca większość tych pieców to proste konstrukcje, które można scharakteryzować dwoma określeniami: są wszystkopalne i bardzo mało wydajne. Duża ilość paliwa, którą trzeba zużyć oraz fakt, że często używane jest w nich paliwo niskiej jakości powodują, że duże miasta w Polsce w okresie jesienno – zimowym praktycznie są cały czas zasnute mgłą. Swoje dokładają także samochody. Liczba samochodów osobowych zarejestrowanych w Polsce wynosi 520 pojazdów na 1000 mieszkańców a to więcej niż średnia europejska. Nie jest to bynajmniej powód do dumy. Spory odsetek samochodów na naszych drogach nie zostałby zarejestrowany w innych unijnych krajach. Także ze względu na toksyczność spalin.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

O szkodliwości zanieczyszczonego powietrza można by pisać długie elaboraty. W zasadzie nie ma organu, nie ma układu w naszym ciele, który nie byłby uszkadzany przez związki chemiczne zawarte w zanieczyszczeniach. Przyjmuje się, że z powodu zanieczyszczenia powietrza umiera w Polsce ponad 40 tys. osób rocznie. To ponad 12 razy więcej osób niż ginie wskutek wypadków drogowych! Grupami szczególnie narażonymi są dzieci i osoby starsze. Zanieczyszczenia bardzo negatywnie wpływają na rozwój dziecka przed urodzeniem. Prowadzone także w Polsce badania jednoznacznie wskazywały, że dzieci, których matki w okresie ciąży przebywały na terenach o dużym zanieczyszczeniu powietrza, miały mniejszą masę urodzeniową, były bardziej podatne na zapalenia dolnych i górnych dróg oddechowych i nawracające zapalenie płuc w okresie niemowlęcym i późniejszym, a nawet wykazywały gorszy rozwój umysłowy.

To problem każdego!

W sondażu przeprowadzonym na zlecenie Ministerstwa Środowiska w sierpniu 2015 r. czystość powietrza była wymieniana jako jedna z trzech – obok bezpieczeństwa na drogach i poziomu przestępczości – najważniejszych kwestii, od których zależy komfort życia w danej miejscowości. Problem z tym, że większość pytanych nie widzi tego problemu w miejscowości w której mieszka. Temat dla nich istnieje, ale jest abstrakcyjny, mają go inni. Prawda jest inna. Nawet w wypoczynkowych miejscowościach jak Zakopane czy Sopot jakość powietrza jest koszmarna. Tymczasem problem w dużej części można rozwiązać bez dodatkowych inwestycji czy zwiększania rachunki np. za ogrzewanie. Wystarczy zmienić własne nawyki. Kupno węgla o odpowiednich parametrach to pozornie wyższy wydatek. Lepszy węgiel ma jednak wyższą wartość opałową, czyli trzeba go zużyć mniej by wyprodukować podobna ilość ciepła. Nic nie kosztuje dbanie o sprawność domowego pieca przez regularne czyszczenie go. Nic nie kosztuje (można dzięki temu nawet zaoszczędzić), zamiana w mieście samochodu na komunikacje miejską albo rower.

A miejsce śmieci… jest w śmietniku. Inaczej pozostałości z ich spalania, będę kumulowały się w naszych płucach. Polacy w domowych piecach spalają rocznie do 2 mln ton odpadów. W konsekwencji do atmosfery i do naszych płuc trafiają m.in. toksyczne dioksyny, furany, cyjanowodór.

Tomasz Rożek

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.
Brak komentarzy do Oddychamy trucizną!!!

Ciemno to widzę

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

 

Gdyby zważyć cały wszechświat, wszystkie gwiazdy, planety, mgławice, komety, asteroidy,… wszystkie te obiekty stanowiłyby zaledwie kilka procent masy całości. Większość, przeważającą większość stanowiłaby nieznana forma materii i jeszcze bardziej tajemnicza forma energii.

Uparta dziewczyna

Co takiego może być tajemniczego w materii? Cóż, problem polega na tym, że my nie mamy pojęcia czy ciemna materia wygląda tak jak nasza, czy jest zbudowana tak jak nasza. Więcej, nie wiemy czy obowiązują ją te same prawa przyrody co materię naszą. Naszą czyli tą, z której jesteśmy zbudowani my i wszystko co nas otacza. Patrząc w niebo, nawet jeżeli używamy największych teleskopów nie widzimy ciemnej materii. Skąd zatem wiemy, że ona w ogóle istnieje? Z odpowiedzią na to pytanie wiąże się historia pewnej upartej młodej naukowiec.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W 1970 roku młoda doktorantka jednego z amerykańskich uniwersytetów, Vera Rubin, postanowiła zmierzyć prędkość gwiazd w standardowej galaktyce spiralnej. Badania nie zapowiadały się ciekawie, bo wiedza o tym, że gwiazdy w galaktyce spiralnej poruszają się jak woda w wirze, była wtedy powszechna. Uważano, że te gwiazdy, które znajdują się dalej od centrum galaktyki powinny poruszać się wolniej, niż gwiazdy, które znajdują się bliżej jej środka. Verze odradzano zajmowanie się tym tematem.

q-100No bo w końcu po co robić pomiary, skoro wiadomo jaki będzie ich wynik? Vera uparła się jednak, że chce swoje obserwacje przeprowadzić. I odkryła… że niezależnie od odległości od centrum galaktyki, gwiazdy mają taką samą prędkość. Ta jedna obserwacja zburzyła fundament na którym stała wiedza o galaktykach. Od teraz nic się nie zgadzało. Takie galaktyki nie miały prawa istnieć. A przecież istniały. Jeżeli ktokolwiek miał wątpliwość, mógł spojrzeć przez teleskop. Próba wyjaśnienia tego fenomenu była jeszcze bardziej zaskakująca niż samo odkrycie.  Nikt – z Verą Rubin włącznie – nie miał wątpliwości, że za ruch gwiazd w galaktyce odpowiedzialna jest grawitacja. Problem polegał na tym, że jej źródło głównie znajduje się w centrum galaktyki. Tak przynajmniej myślano. Tymczasem Vera Rubin uznała, że centrum galaktyki wcale nie musi być jedynym miejscem silnie przyciągającym gwiazdy. Uznała, że pomiędzy gwiazdami musi być jakaś masa dodatkowa, taka, która nie świeci (i jej nie widać). To ona jest źródłem siły grawitacyjnej, która powoduje, że wszystkie gwiazdy w galaktyce mają taką samą prędkość. Jak taką masę sobie wyobrazić? Może jako chmurę niewidocznej dla nas materii w której galaktyka jest zanurzona? Może gwiazdy na tej chmurze się unoszą tak jak oka tłuszczu unoszą się na powierzchni rosołu?

Coś się odkleiło

Potem zaczęto się przyglądać innym galaktykom, gromadom galaktyk i jeszcze większym strukturom. Wszędzie widziano efekt działania ogromnej siły grawitacji. Tyle tylko, że źródła tej siły, czyli samej masy nigdzie nie dostrzeżono. Szybko policzono, że gdyby nie ciemna materia, galaktyki rozsypałyby się. Siła grawitacji jest za mała by duże kosmiczne struktury utrzymywać w porządku, potrzeba kleju, czegoś co to wszystko scala. No i to jest największa tajemnica, czym ten klej jest? Jak wygląda, co jest jego źródłem? I czy stosuje się do praw natury, które obowiązują w naszym świecie?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Co do tego można mieć wątpliwości po ostatnich obserwacjach zespołu naukowców z największych na świecie ośrodków, w tym NASA, ESA (Europejska Agencja Kosmiczna) oraz kilku amerykańskich uniwersytetów. Korzystając z danych obserwacyjnych teleskopu kosmicznego Hubble’a oraz teleskopu VLT należącego do Europejskiego Obserwatorium Południowego, udało się sfotografować zderzenie czterech galaktyk wchodzących w skład gromady galaktyk Abell 3827. Dokładna obserwacja ruchu gwiazd wchodzących w skład tych galaktyk, dokładna obserwacja biegu promieni światła pozwoliła astronomom stwierdzić, że ciemna materia oderwała się od jednej ze zderzających się galaktyk. Brzmi co najmniej abstrakcyjnie, ale tak rzeczywiście jest. Za jedną z galaktyk, w odległości kilku tysięcy lat świetlnych ciągnie się obłok czegoś, czego co prawda nie widać, ale co wpływa grawitacyjnie na całe otoczenie. Tego „czegoś” nie powinno tam być! To „coś”, czyli ciemna materia, powinno być we wnętrzu galaktyki, pomiędzy gwiazdami, które galaktykę tworzą. Co takiego się stało, że materia „zwykła” i ciemna, w tym konkretnym przypadku odłączyły się od siebie? Na to pytanie nie ma dzisiaj odpowiedzi, trudno też powiedzieć czy takie sytuacje zdarzają się często. Ta jest pierwszą tego typu. Choć szczerze mówiąc, o niczym nie musi to świadczyć, nie jesteśmy zbyt dobrze w obserwowaniu czegoś… czego nie widać.

Pajęczyna

Jednym z pomysłów na wyjaśnienie zaobserwowanego zjawiska jest to, że ciemna materia nie stosuje się do praw, które nas obowiązują, że grawitacja działa na nią inaczej niż na obiekty „zwykłej” materii. Na razie, to zwykłe gdybanie. Ale to nie znaczy, że kosmolodzy i astrofizycy nie próbują ciemnej materii złapać. Jednym ze sposobów na jej poznanie jest tworzenie map jej rozmieszczenia. To bardzo trudna sztuka, ale czasami się udaje. Takie mapy tworzy się po to, by znaleźć klucz, by zobaczyć gdzie ciemna materia szczególnie chętnie się grupuje. To może pomóc w określeniu jej właściwości.

seqD_063Takie trójwymiarowe  mapy różnych części kosmosu powstają od wielu lat. Właśnie opublikowano kolejną, dokładniejszą niż poprzednie. Pracował nad nią zespół trzystu naukowców z całego świata. I została zaprezentowana podczas ostatniego spotkania Amerykańskiego Towarzystwa Fizycznego w Baltimore. Mapa jest dość spora, zawiera miliardy gwiazd i obejmuje całe… cztery dziesiąte procent nieba. Co ciekawe, na wielu mapach nieba, na których zaznacza się występowanie ciemnej materii, jest ona uformowana w postaci włókien. Po raz pierwszy udało się to zauważyć kilka lat temu, gdy dzięki użyciu Obserwatorium Kecka na Hawajach astrofizycy obserwowali kwazar UM287. Wyniki ich prac były opublikowane w Nature. Kwazar o którym mowa oddalony jest od Ziemi o około 10 miliardów lat świetlnych. Kwazary przypominają gwiazdy, ale w rzeczywistości są bardzo aktywnymi galaktykami, które „wyrzucają” w przestrzeń ogromne ilości energii. Badacze wykorzystali to promieniowanie tak, jak wykorzystuje się światło latarki, wchodząc do ciemnego pokoju. Światło kwazaru UM287 padało na ogromną, mającą średnicę dwóch milionów lat świetlnych chmurę gazu. Ile to jest 2 miliony lat świetlnych? Trudno to sobie wyobrazić. Układ Słoneczny ma średnicę około 30 dni świetlnych, a cała Galaktyka Drogi Mlecznej nieco ponad 100 tys. lat świetlnych. Oświetlana przez kwazar chmura pyłu była więc 20 razy większa od naszej galaktyki.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Wracając jednak do ciemnej materii. Astronomowie analizując rozchodzenie się światła w tej chmurze, zauważyli, że materia nie jest w niej równomiernie rozłożona, że tworzy coś w rodzaju włókien. Podali hipotezę, że to włókna ciemnej materii. Obserwacja jest w zgodzie z modelami teoretycznymi, które mówią, że ciemna materia nie jest posklejana jak materia widzialna w obiekty takie jak np. planety czy gwiazdy, czyli w struktury kuliste. Przypomina raczej pajęczynę na której „utkany” jest cały wszechświat. Kawałek tej pajęczyny właśnie zauważono. Nigdy wcześniej nie widziano bezpośrednio takich włókien.

Przegrana grawitacja

Ciemna materia – zdaniem astronomów – ma w odpowiadać za kształt dużych obiektów, takich jak np. galaktyki czy ogromne chmury gazu i materii. Trudno powiedzieć, czy może budować całe (ciemne) galaktyki. Pewne jednak jest, że wszechświat składa się z ciemnej materii w około 24 proc. Materia widzialna, taka z której i my jesteśmy zbudowani tworzy go w około 4 procentach. Razem 28 proc. Gdzie jest reszta? Czym jest reszta? I to jest chyba największa zagadka kosmologii. 72 proc. wszechświata to ciemna energia. Nie wiadomo czym jest, nie wiadomo gdzie jest. Być może wszędzie dookoła, być może jest gdzieś skupiona. Wydaje się, że na małych odległościach nie widać efektów jej działania. Być może są one tak ulotne, że nie potrafimy ich zarejestrować. Gdy jednak spojrzeć na kosmos w dużej skali, skali nawet nie galaktyk, tylko gromad galaktyk czy supergromad… Galaktyki oddalają się od siebie. Czym dalej są, tym szybciej się oddalają. Dlaczego tak się dzieje? Dlaczego grawitacja, przyciąganie, nie powoduje, że zaczną się do siebie przybliżać? Dzisiaj uważa się, że to właśnie ciemna energia powoduje puchnięcie wszechświata. A to znaczy, że w pewnym sensie działa przeciwko grawitacji. Ta ostatnia na małych dystansach tą walkę wygrywa. Ale w dużych skalach, to ciemna energia króluje.

Wszechświat jest fascynujący! I wciąż tajemniczy.

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do Ciemno to widzę

Jak fotografować SUPERKsiężyc?

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim….

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim. Po drugie, po to by fotografować pełnię, nie trzeba inwestować w drogi sprzęt. Prawdę mówiąc nie trzeba inwestować wcale. Wystarczy aparat, który wielu z nas i tak ma w domu. 14 listopada nałożą się na siebie dwa zjawiska. Pełnia Księżyca i jego maksymalne zbliżenie do Ziemi. Choć tarcza Srebrnego Globu nie będzie zauważalnie większa, to jego jasność zwiększy się o 20 – 30 proc. Tylko jak zrobić zdjęcie, które byłoby dla nas powodem do domy (a nie wstydu)?

Oprócz aparatu, w zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować.

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: Jak tylko będzie odpowiednia pogoda, Księżyc w pełni będzie można obserwować na tyle długo, że bez pośpiechu i stresu warto poeksperymentować. Ustawiaj różne czułości. Zawsze lepiej mieć więcej zdjęć (z których część wyląduje w koszu), niż żałować, że zrobiło się za mało.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj SUPERKsiężyc z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Spróbuj zmienić lokalizację. Na długich czasach pięknie na tle Księżyca wyglądają np. jadące samochody, albo panorama oświetlonego miasta. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilkanaście tak samo skadrowanych zdjęć (nie ruszając aparatu) np. co kilka minut. Nakładając je na siebie uzyskasz… prostą animację.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie 

Powodzenia !!!

Brak komentarzy do Jak fotografować SUPERKsiężyc?

NASA nie zmienia horoskopu!!!

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O zmianie znaków zodiaku słyszę regularnie od kilku już lat. Tak jak gdyby „znak zodiaku” to było coś, co ma swoje miejsce albo coś, co da się precyzyjnie określić. Tak nie jest, choć kiedyś tak było. Astronomia i astrologia były jak dwie siostry bliźniaczki. Dorastały razem i uczyły się razem. Z tą tylko różnicą, że jedna z sióstr była pilną uczennicą, która czasami musiała iść pod prąd swojej epoki, a druga była wygodna i pragmatyczna. Druga siostra, Astrologia, była konformistką. W efekcie Astronomia i Astrologia rozeszły się ponad dwa tysiące lat temu. Astronomia szła naprzód, a astrologia stała w miejscu.

Dwie latarki 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Układ Słoneczny znajduje się w galaktyce Drogi Mlecznej, w jednej z jej odnóg, zwanych Ramieniem Oriona. Choć kosmos to głównie pustka, zdarzają się w nim niewielkie (w porównaniu z tą pustką) wyspy materii. Są nimi właśnie galaktyki. Jesteśmy otoczeni gwiazdami. Są daleko, ale nie aż tak, by nie były widoczne. Na niebie w pogodną noc można zobaczyć kilka tysięcy świetlnych punktów. Wyobraźnia człowieka już tysiące lat temu te punkty pogrupowała w kształty, czyli konstelacje. Jedną z najbardziej znanych jest Wielki Wóz (część gwiazdozbioru Wielkiej Niedźwiedzicy), który składa się z siedmiu gwiazd.  Gwiazdozbiory to grupa gwiazd, które nie są ze sobą nijak związane, ich bliskość jest pozorna, zajmują po prostu określony obszar sfery niebieskiej. Jak to rozumieć? Wyobraźmy sobie dwie latarki zapalone w ciemną noc. Tak ciemną, że innych elementów krajobrazu nie byłoby widać. Nie jesteśmy w stanie ocenić, która latarka jest bliżej, a która dalej.  Tym bardziej że latarka bliższa może świecić słabszym światłem, a ta dalsza może być potężnym reflektorem. Tak właśnie jest z gwiazdami. Na oko wszystkie gwiazdy nocnego nieba są w takiej samej odległości od nas. Niektóre z nich układają się w figury, postacie, a nawet całe sceny. Trzeba do tego sporej wyobraźni, ale tej nigdy ludziom nie brakowało. I tak niebo dla starożytnych było teatrem, sceną, na której w różnych częściach roku pojawiały się mityczne stwory, zwierzęta, herosi i bóstwa.

12 czy 13? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla obserwatorów nieba szczególne znaczenie odgrywały gwiazdozbiory znajdujące się w tzw. zodiaku, a więc w pasie nieba, po którym poruszają się Słońce, Księżyc i inne planety. W starożytnej Babilonii czy Asyrii wyobrażano sobie, że gwiazdozbiory leżące na zodiaku są śladami na drodze, po której porusza się nasza dzienna gwiazda. Że dzielą tę drogę na etapy, a każdy z tych etapów jest w jakimś sensie charakterystyczny. Gwiazdozbiorów leżących w zodiaku jest 13 i tutaj pojawia się pierwszy problem. Znaków zodiaku jest 12. Ten brakujący to Wężownik. Ale o tym za chwilę. 12 gwiazdozbiorów w zodiaku podzieliło rok na 12 części. Chciałoby się napisać: na „równe części”, ale… gwiazdozbiory są różnej wielkości. Z kalendarza wynika, że okresy odpowiadające poszczególnym znakom zodiaku są mniej więcej równe. Tymczasem… Słońce przez gwiazdozbiór Panny przechodzi 42 dni, a przez Skorpiona tylko 6 dni. Na dodatek granice między gwiazdozbiorami są czysto umowne. Trudno rozstrzygnąć, czy Słońce jest wciąż na tle gwiazdozbioru Skorpiona czy już Strzelca. Okresy, gdy Słońce przechodzi przez kolejne gwiazdozbiory (choć jest to ruch pozorny, bo to Ziemia się obraca i dlatego widzimy Słońce na różnym tle), są uzależnione od tego, jak zostaną wyznaczone granice między nimi. W wyniku dosyć pokrętnego podziału Słońce jest w znaku Panny przez 30 dni, choć w rzeczywistości powinno być przez wspomniane 42, a w Skorpionie przez 29 dni, choć w rzeczywistości na tle tego gwiazdozbioru znajduje się tylko 6 dni. Od czego więc zależeć mają cechy człowieka? Od rzeczywistego znaku zodiaku, w którym było Słońce w dniu urodzenia, czy od znaku uznanego zwyczajowo? To ważne pytanie, bo z tablic astronomicznych wynika, że Słońce przechodzi na tle gwiazdozbioru Panny od 16 września do 30 października. Astrologowie uważają jednak, że Słońce jest w Pannie od 23 sierpnia do 22 września. Ktoś, kto urodził się, powiedzmy, 25 sierpnia, kalendarzowo (astrologicznie) jest więc Panną, ale Słońce w dniu jego urodzin było w znaku Lwa. Nawet przyjmując, że dzień urodzin ma jakiekolwiek znaczenie, przeważająca większość z tych, którzy czytają horoskopy, czyta nie ten, który powinna.

Wężownik wyleciał 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dokładne granice między gwiazdozbiorami (nie tylko tymi z zodiaku) ustalono dopiero w 1928 r. w czasie kongresu generalnego Międzynarodowej Unii Astronomicznej. Teraz – można by pomyśleć – skończą się nieporozumienia. Przeciwnie. Dopiero od tego momentu widać, jak bardzo astrologia oddaliła się od astronomii. Astronomia idzie naprzód, a astrologia stoi w miejscu. Mimo znanych i ustalonych raz na zawsze granic astrolodzy nie zdecydowali się skorygować okresów, w jakich Słońce znajduje się na tle poszczególnych gwiazdozbiorów w zodiaku. Co więcej, w wyniku prac astronomów z Unii Astronomicznej do gwiazdozbiorów zodiakalnych powinna być zaliczona kolejna, 13. konstelacja Wężownika. Słońce wchodzi w jej „obszar” 30 listopada, a opuszcza go 17 grudnia. W astrologicznych znakach zodiaku po Wężowniku nie ma nawet śladu. A to dlatego, że starożytni, Wężownika nie widzieli. Gwiazdy z których „się składa” za słabo świecą. Ale jest jeszcze jeden powód bałaganu. Obrót Ziemi wokół własnej osi zajmuje jej dobę. Dlatego mamy dzień i noc. Na to nakłada się trwający rok bieg Ziemi wokół Słońca, którego skutkiem są pory roku. Ale Ziemia ma przynajmniej jeszcze jeden rodzaj ruchu regularnego, powtarzalnego. Oś Ziemi zatacza w przestrzeni koła, a pełny jej obrót zajmuje około 26 tys. lat i zwany jest rokiem platońskim. Wirującą Ziemię można porównać do wirującego zabawkowego bąka. I tak jak bąk nie wiruje w pozycji „pionowej”, tak samo oś obrotu Ziemi jest nachylona i zatacza w przestrzeni koła. Ten ruch to tzw. precesja. Ziemska precesja jest wynikiem przyciągania przez inne planety Układu Słonecznego, a także przez oddziaływanie grawitacyjne samego Słońca i Księżyca.

Zabawa dla naiwnych 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ten dodatkowy ruch powoduje, że – co prawda powoli – zmienia się „widok” nocnego nieba. Nie są to zmiany duże, ale w ciągu setek lat… Gwiazdozbiory były znane przynajmniej 2–3 tys. lat przed Chrystusem. Od tamtego czasu naprawdę wiele się zmieniło. 2 tys. lat temu Słońce w dniu równonocy wiosennej wchodziło w gwiazdozbiór Barana (chodzi o wiosnę na półkuli północnej, ta na półkuli południowej jest przesunięta o pół roku). Dzisiaj jest w gwiazdozbiorze Ryb. Za około 600 lat w pierwszym dniu wiosny Słońce będzie w gwiazdozbiorze Wodnika. Co na to astrologia? Nic. Nie bierze w ogóle pod uwagę faktu precesji Ziemi. Tak jak gdyby nasza wiedza zatrzymała się kilka tysięcy lat temu. Równonoc wiosenna następuje z 20 na 21 marca. I właśnie wtedy według astrologów Słońce wchodzi w gwiazdozbiór Barana. W rzeczywistości znajdzie się w nim dopiero 29 dni później. W magiczną moc dnia urodzenia wierzy sporo osób. W telewizjach kablowych funkcjonują całe kanały, w których wróżki i wróżbici odczytują przyszłość ze szklanych kul, z kart czy z gwiazd. Horoskopy publikuje wiele gazet, a niektóre z nich z okazji Nowego Roku dołączają do swoich tytułów całe wkładki temu poświęcone. Gdy prowadzono badania nad sprawdzalnością horoskopów, okazywało się, że sprawdzają się one w takiej samej mierze zarówno wtedy, gdy czyta się horoskop swój, jak i wtedy, gdy zapoznaje się z przeznaczonym dla kogoś innego. Cała sztuka pisania horoskopów nie polega bowiem na tym, żeby cokolwiek przepowiedzieć, tylko na tym, by pasowało wszystkim i w każdej sytuacji. Gwiazdy, planety czy komety nie mają nic do tego.

A co z NASA? Cóż, agencja kosmiczna co jakiś przypomina, że astrologia to nie nauka cytując to, co napisałem powyżej. O niezauważonym gwiazdozbiorze, o precesji czy o nieregularnych granicach pomiędzy gwiazdozbiorami. Tylko tyle i aż tyle.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do NASA nie zmienia horoskopu!!!

„Ziemia” w sąsiedztwie

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Planeta krąży wokół czerwonego karła Proxima Centauri, czyli gwiazdy, która jest naszą najbliższą gwiazdową sąsiadką. Na odkrytej planecie woda może być w stanie ciekłym. Proxima b została złapana dzięki obserwacjom prowadzonym w Chile. Krąży wokół swojej gwiazdy macierzystej nieco ponad 11 ziemskich dni. Tak jak wspomniałem Proxima Centauri jest naszą najbliższą sąsiadką, a to oznacza, że planeta, która wokół niej krąży jest najbliższą nam planetą pozasłoneczną. Czy jest na niej życie? Tego nie wiadomo i trudno nawet powiedzieć w jaki sposób moglibyśmy się tego dowiedzieć. Bardzo dokładne obserwacje mogą nam udzielić inf. o składzie atmosfery albo nawet związków na powierzchni planety, ale na przelot na Proxima b będzie trzeba jeszcze poczekać. Gwiazda i planeta oddalone sa od nas o około 4 lata świetlne, czyli około 38 bilionów kilometrów.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla tych, którzy gwiazdę i planetę będą próbowali wypatrzyć na nocnym niebie, także nienajlepsza wiadomość. Obserwacja pozasłonecznych planet jest ekstremalnie trudna nawet przez profesjonalne teleskopy nie mówiąc już o amatorskich. Gołym okiem wcale nie da się ich zobaczyć. Niestety gołym okiem nie widać nawet gwiazdy Proxima Centauri. Jest czerwonym karłem, który świeci za słabym światłem. – Po raz pierwszy zaczęliśmy podejrzewać, że wokół tej [Proxima Centauri] gwiazdy krąży planeta już w 2013 roku. Od tamtego czasu obserwowaliśmy gwiazdę kilkoma różnymi teleskopami – powiedział Guillem Anglada-Escude, szef zespołu astronomów zaangażowanych w projekt badawczy Pale Red Dot.

Masa odkrytej planety to 1,3 masy Ziemi. Planeta krąży wokół swojego słońca w odległości 7 mln kilometrów, a to wielokrotnie mniej niż odległość Ziemia – Słońce. To znacznie mniej niż odległość Słońce – Merkury. Proxima Centauri jest jednak inną gwiazdą niż ta nasza. Świeci słabym światłem i dlatego mimo małej odległości gwiazda – planeta, na powierzchni tej drugiej może znajdować się woda w stanie ciekłym.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Teraz, te Proxima b będzie głównym celem obserwacji tych astronomów, którzy będą poszukiwali życia na obcych planetach. Jeżeli kiedykolwiek (a to na pewno nastąpi) zorganizujemy międzygwiezdną misję, na pewno pierwszym jej celem będzie właśnie nowo odkryta planeta.

Tomasz Rożek

Brak komentarzy do „Ziemia” w sąsiedztwie

Obłoki srebrzyste coraz częstsze [galeria]

Pojawiają się coraz częściej więc jest okazja żeby je obserwować. Właśnie teraz! Obłoki srebrzyste, najwyżej „powieszone” chmury w naszej atmosferze.

Pojawiają się coraz częściej więc jest okazja żeby je obserwować. Właśnie teraz! Obłoki srebrzyste, najwyżej „powieszone” chmury w naszej atmosferze.


Estonia, Kuresoo, @Martin Koitmäe

W Polsce najlepszym okresem do ich obserwowania jest środek roku, czyli miesiące czerwiec i lipiec. Obłoki srebrzyste znajdują się w mezosferze, czyli na wysokości do 85 km nad naszymi głowami, praktycznie na granicy ziemskiej atmosfery i kosmosu. Z powierzchni Ziemi wyglądają jak bardzo subtelna mgiełka. I rzeczywiście z rzadką mgłą mają wiele do czynienia, bo składają się z ogromnej ilość maleńkich kryształków lodu. Wielkość tych kryształków nie przekracza milionowych części milimetra. Obłoki srebrzyste widać około północy. Niebo jest już wtedy ciemne, ale Słońce, które w czasie przesilenia letniego znajduje się „płytko” poniżej linii horyzontu oświetla obiekty znajdujące się w wysokich partiach atmosfery. Np. ogromne chmury maleńkich kryształków lodu. Te na tle ciemnogranatowego nieba srebrzą się. – Wysokość na której chmury się znajdują sprawia, że mogą one odbijać światło słoneczne, co powoduje wrażenie, jakby świeciły własnym światłem – mówi James Russell z Uniwersytetu w Hampton.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

450px-Noctilucent_clouds_over_saimaa
Finlandia, Jezioro Saimaa, @Mika Yrjölä

Zdaniem badaczy z Uniwersytetu w Hampton zjawisko srebrzących się obłoków występuje coraz częściej i można je obserwować z coraz niższych szerokości geograficznych. Co ciekawe, zdaniem naukowców, wiąże się to ze spadkiem temperatury na szczycie mezosfery, w której powstaje zjawisko. Teraz zespół badaczy chce sprawdzić czy ma to jakiś związek z aktywnością Słońca. Co chmury mają wspólnego z naszą gwiazdą? Mogą mieć bardzo dużo. Słońce jest źródłem nie tylko światła, ale także naładowanych elektrycznie cząstek (np. protonów), które z dużą prędkością poruszają się w przestrzeni kosmicznej. Co prawda przeważająca ich większość zostaje zatrzymana przez ziemskie pole magnetyczne, zdarza się jednak że niewielka ich część przedostaje się do atmosfery. Tam w wyższych jej partiach w wyniku tego zjawiska mogą powstawać chmury. Intuicja podpowiada więc, że czym wyższa aktywność Słońca, tym więcej powinno pojawiać się obłoków. Intuicja może jednak zawodzić. Jak się wydaje, powstawanie obłoków srebrzystych ma związek z niską temperaturą wysokich warstw atmosfery. Niższa temperatura pojawia się jednak, gdy aktywność Słońca spada. – Kiedy zbliża się minimum aktywności słonecznej możemy oczekiwać, że mniej energii będzie dostarczane do planety, a co za tym idzie pojawi się tendencja ochłodzenia – dodał Russel.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Coloured-crosshatc_1411905i
Finlandia, @webodysseum.com

Co ma wpływ na częstotliwość i miejsce pojawiania się obłoków srebrzystych? Dzisiaj trudno powiedzieć. I nie chodzi tylko o to, by zrozumieć widowiskowe, ale w sumie dość rzadkie zjawisko atmosferyczne. Chodzi o to, by zrozumieć całą atmosferę

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

nocti-pano
Kanada, miasto Edmonton, @Hayley Dunning

 

Noctilucent-cloud-11
Z pokładu samolotu, @webodysseum.com

Brak komentarzy do Obłoki srebrzyste coraz częstsze [galeria]

O wycince Puszczy słów kilka

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwoliło na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi?

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwolił na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O polityce tutaj nie piszę. Ale co zrobić jak czasami polityki nie da się ominąć? Spór o najstarszy w Europie fragment lasu pierwotnego musi wzbudzać emocje. Te są tym większe, że na różnicę zdań pomiędzy Zielonymi i Ministerstwem Środowiska nakłada się spór czysto polityczny. Emocjom nie ma się jednak co dziwić, w końcu puszcza to ogromna wartość przyrodnicza i kawał polskiej historii. Są w niej miejsca, które nigdy nie zostały poddane – pośrednio ani bezpośrednio – modyfikacjom ze strony człowieka. Reszta puszczy to niemal w całości las naturalny, czyli obszar, w którym człowiek gospodaruje, ale w sposób mocno ograniczony.

Puszcza polskich królów 

To w sumie bardzo niewielki teren. Po polskiej stronie granicy znajduje się 42 proc. obszaru puszczy (około 50 km z południa na północ, 55 km ze wschodu na zachód), reszta leży na Białorusi. Choć w puszczy znajdują się miejsca, w których las ma charakter pierwotny, i takie, gdzie ma charakter naturalny, w części wpływ gospodarki leśnej jest widoczny. Ta ingerencja w las to nie tylko wynalazek współczesności, ale wynik nasadzeń drzew przed I wojną światową, w okresie międzywojennym i w latach powojennych.

To wtedy puszcza została „wzbogacona” o gatunki drzew, które naturalnie w niej występowały dużo rzadziej, głównie świerki. Dzisiaj sadzone są inne gatunki, co ma przywrócić puszczy jej naturalny charakter. Miejsce drzew „obcych” zajmują dęby, lipy, klony i wiązy. Po raz pierwszy o Puszczy Białowieskiej można przeczytać w opisie polowania, na które w 1409 roku wybrał się Władysław Jagiełło, by zdobyć żywność dla rycerzy wyruszających na wojnę przeciwko zakonowi krzyżackiemu. Solone mięso w beczkach spławiano do Płocka.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Z niepotwierdzonych źródeł wynika także, że w czasie tego polowania wyłapywano dzikie konie (tarpany), które następnie służyły jako konie bojowe. Puszcza Białowieska (choć oczywiście w zupełnie innym niż dzisiaj kształcie) podlega ochronie co najmniej od 600 lat. Była terenem myśliwskim do wyłącznego użytku królów polskich i książąt litewskich. Każda czynność (łowienie ryb, zakładanie barci, koszenie łąk), z wchodzeniem do puszczy włącznie, była regulowana nadawanymi przez króla (konkretnym osobom, ewentualnie osadom) pozwoleniami. Nawet najznamienitsi polscy dostojnicy nie mogli liczyć na stałe zezwolenie na polowanie w puszczy, od czasu do czasu dostawali jednorazowy „przydział”. Za zabicie zwierzęcia bez pozwolenia groziła kara śmierci.

Równie restrykcyjnie podchodzono do wyrębu drzew. W całym XVI wieku wydano tylko dwa pozwolenia: w 1521 roku król Zygmunt I Stary pozwolił Cerkwi w Szereszewie na wyrąb drzew na potrzeby własne, a w 1537 roku królowa Bona pozwoliła na to Kościołowi w tej samej miejscowości. Przez następnych kilkaset lat nowe pozwolenia na wyrąb były nadawane sporadycznie. Paradoksalnie puszczę bardziej cenił rosyjski carat niż polscy komuniści. Zaborcy traktowali ją jako miejsce rozmnażania się zwierząt i teren myśliwski. Dzięki dokarmianiu, zwierzyny w puszczy było za dużo, czego efektem było drastyczne zahamowanie wzrostu drzew liściastych.

721px-Canis_lupus_laying

Wilk

Zwierzęta zjadały młode pędy. Przed I wojną światową po raz pierwszy na masową skalę zalesiano puszczę świerkami. Stopniowa poprawa ochrony puszczy zaczyna się dopiero po 1989 roku. Projekt utworzenia Parku Narodowego Puszczy Białowieskiej pojawia się w 1994 roku, choć już 15 lat wcześniej została ona wpisana przez UNESCO na Światową Listę Rezerwatów Biosfery. Dzisiaj z 860 km kw. puszczy około 300 km kw. to lasy naturalne i zbliżone do naturalnych. A w nich drzewa, których nigdzie indziej w Europie nie znajdziemy. To kwestia nie tylko estetyki, ani tym bardziej potencjału gospodarczego (150-letnie drzewo kiepsko nadaje się na deski).

Stare drzewo znajdujące się w lesie pierwotnym jest nośnikiem genów, które są oryginalne i charakterystyczne dla tego regionu świata i są wynikiem naturalnej selekcji. A to ogromnie istotne. Posadzenie drzewa tego samego gatunku nie zastąpi tego skarbu. Liście obydwu drzew będą pewnie miały ten sam kształt, ale pula genowa będzie inna. W puszczy od dziesięcioleci prowadzone są badania i obserwacje, których wartość jest bezcenna.

Leśnicy leczą puszczę 

Najstarszy nienaruszony las, gatunki zwierząt i roślin występujące tylko w tym miejscu, w końcu oryginalne geny. O co w takim razie jest awantura? O przyszłość. Leśnicy chcieli zwiększyć ilość ścinanych w puszczy drzew. Ekolodzy twierdzili (i dalej twierdzą), że to zaledwie wstęp do masowej wycinki w najstarszym lesie w Europie. Wycinki, która spowoduje straty przyrodnicze nie do odrobienia. Z kolei leśnicy przekonują, że zwiększona wycinka to konieczność, po to, by… puszcza przetrwała. Ekologom i leśnikom – przynajmniej w deklaracjach – chodzi o to samo, o zachowanie bezcennego dziedzictwa przyrodniczego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Problem polega jednak na tym, że obie grupy uważają, iż aby osiągnąć ten cel, trzeba podjąć dokładnie odwrotne kroki. Jedni postulują: „Ręce precz od puszczy”, drudzy przekonują, że bez pomocy człowieka puszcza, a przynajmniej jej część, zostanie bezpowrotnie zniszczona. Dlaczego? Bo zmiany klimatu, a konkretnie rosnące temperatury średnioroczne, oraz odwodnienie powodują osłabienie niektórych gatunków drzew. Najbardziej podatne na niekorzystne zmiany są świerki.

596px-Europäische_Sumpfschildkröte_Emys_orbicularis

Żółw błotny jest bardzo rzadkim elementem fauny Puszczy By Böhringer Friedrich

Osłabione stają się łatwym celem dla leśnych owadów, np. korników. Biorąc pod uwagę nadreprezentację świerków w niektórych częściach puszczy (wynikającą ze sztucznego nasadzania), na niektórych obszarach ilość chorych drzew jest spora. Leśnicy chcą chronić zdrowe drzewa, wycinając chore. Nadleśnictwa (Białowieża, Hajnówka i Browsk) mają dziesięcioletni przydział (plan) na wycinkę drzew. Ten plan określa Ministerstwo Środowiska i jest w nim ustalona łączna masa drewna, jaka może być wycięta w ciągu 10 lat. Zwykle każdego roku wycina się 10 proc. dziesięcioletniego przydziału. Taki podział nie jest jednak obligatoryjny. Nadleśnictwo może podjąć decyzję, że w którymś roku ilość wyciętych drzew będzie większa, ale za to w kolejnych latach trzeba będzie wycinać mniej. Dzisiaj obowiązujące przydziały zostały określone na lata 2012–2021. Decyzją nadleśnictwa w trzech pierwszych latach obowiązywania planu (2012–2015) wycięto jednak prawie 90 proc. drzew przewidzianych do wycięcia przez 10 lat. Skąd to przyspieszenie? W opublikowanym na stronie internetowej Lasów Państwowych dokumencie pt. „Puszcza Białowieska potrzebuje ratunku”, sygnowanym przez Regionalną Dyrekcję Lasów Państwowych w Białymstoku, znalazło się stwierdzenie, że nadleśnictwo prowadziło „cięcia sanitarne mające na celu opanowanie gradacji kornika drukarza”.

Leśnicy uważają, że w puszczy panuje klęska kornika, która zagraża dalszemu istnieniu drzewostanów świerkowych, stanowiących na terenie Nadleśnictwa Białowieża ponad 30 proc. powierzchni leśnej (w całej puszczy ok. 10 proc). „Jedyną znaną naukom leśnym i skuteczną metodą walki z kornikiem i ograniczania jego gradacji jest usuwanie drzew zasiedlonych, by ograniczyć rozprzestrzenianie się szkodników” – piszą autorzy dokumentu.

Naukowcy bronią drzew

To, że korniki „siedzą” w puszczy, nie jest przedmiotem sporu. Tyle tylko, że nie wszyscy – tak jak leśnicy – uważają, że drzewa zjadane przez korniki trzeba usuwać. 17 naukowców napisało list zatytułowany „Dlaczego martwe świerki są potrzebne w Puszczy Białowieskiej”. Tego głosu nie można zlekceważyć, gdyż autorzy dokumentu to eksperci z takich dziedzin jak leśnictwo, biologia, agroekologia, entomologia i zoologia, przedstawiciele 14 polskich uczelni i instytucji badawczych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Naukowcy w sposób jednoznaczny i przystępny tłumaczą, dlaczego usuwanie chorych drzew jest błędem. „Opanowane przez korniki świerki zamierają, ustępując miejsca drzewom liściastym, wymagającym dużej ilości światła i lepiej dostosowanym do aktualnych warunków środowiska. Naturalny proces zmiany struktury gatunkowej lasu jest długotrwały, jednak na żadnym z jego etapów nie ma zagrożenia dla trwałości leśnego ekosystemu” – uważają. Nie ukrywają też, że tam, gdzie świerków jest dużo, masowe ich wymieranie może sprawiać wrażenie klęski. Powołują się na przykład Beskidów, które wiele lat temu w sposób sztuczny zostały zalesione świerkami i sosnami. Badacze przestrzegają jednak przed chodzeniem drogą na skróty, szczególnie w Puszczy Białowieskiej (czyli przed wycięciem drzew, zaoraniem terenu i posadzeniem sadzonek drzew liściastych).

By Konrad KurzaczPimkee-mail: konrad.kurzacz@gmail.com - Praca własna, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2065137

Mozaikowy układ zbiorowisk leśnych w Białowieskim Parku Narodowym. Na pierwszym planie widoczny ols z udziałem świerka. By Konrad KurzaczPimke

Argumentują bowiem (powołując się na badania), że „dynamika gradacji kornika niewiele się różni na terenach, gdzie wszelkimi dostępnymi środkami prowadzono walkę z kornikiem, i na terenach, gdzie takich działań nie prowadzono. Usuwanie zaatakowanych przez kornika lub zamarłych z innych przyczyn drzew nie stanowi skutecznej metody zatrzymania gradacji kornika i zamierania świerków, lecz może przynieść skutek przeciwny”. Dlaczego usuwanie chorych drzew zamiast sytuację poprawić, może ją pogorszyć? Badacze piszą, że w przypadku Puszczy Białowieskiej nie da się wyciąć wszystkich zaatakowanych drzew. Tymczasem umierające albo martwe drzewo „przyciąga” chrząszcze, które żywią się kornikami (chrząszcza wabi feromon, zapach wytwarzany przez samce korników w chwili opanowywania drzewa). Zdaniem autorów listu najskuteczniejszą metodą walki z kornikami jest pozostawienie lasu w spokoju.

„Duża koncentracja zamierających świerków opanowanych przez korniki staje się miejscem intensywnego namnażania się drapieżnych chrząszczy, a także innych drapieżnych i pasożytniczych owadów, które z takich miejsc rozprzestrzeniają się na kolejne obszary w poszukiwaniu swoich ofiar” – piszą autorzy tekstu. Choć przejściowo, ze względów estetycznych, niektóre fragmenty puszczy będą wyglądały nieatrakcyjnie, natura poradzi sobie ze szkodnikami.

Będzie awantura

Od wielu miesięcy na niezliczonych forach i stronach internetowych trwa awantura. Uzasadniona! Ministerstwo Środowiska nie przedstawia przekonywujących dowodów na to, że ma rację, z kolei leśnicy posługują się półprawdami. Ekolodzy – wręcz przeciwnie. Pokazują badania, cytują autorytety. I co? I nic, bo minister środowiska Jan Szyszko właśnie zatwierdził zwiększenie wycinku drzew w Puszczy. Zwiększone limity zakładają pozyskanie ponad 180 tysięcy metrów sześciennych drewna w ciągu najbliższych 10 lat. To prawie 5 razy więcej niż zakładał dotychczasowy plan.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czy minister Szyszko nie zna badań, które mówią o tym, że wycinka nie polepsza, a wręcz może pogorszyć sytuację? Pomijam fakt, że grozi nam międzynarodowy skandal. Szkoda mi ostatniego w Europie, a może na całej północnej półkuli nizinnego lasu strefy umiarkowanej z całym jego bogactwem. Puszcza to nie tylko wysokie drzewa i duże zwierzęta (np. żubry), to bogactwo przyrody porównywalne do Wielkiej Rafy Koralowej!

Epipogium_aphyllum_plants

Krytycznie zagrożony wyginięciem w Polsce storzan bezlistny By BerndH

Organizacje ekologiczne biją na alarm, a leśnicy – nie negując tego, o czym piszą naukowcy – przypominają, że ich obowiązują przepisy i procedury zobowiązujące do przeciwdziałania takim zjawiskom jak plaga korników, że ich nadrzędnym celem jest troska o zachowanie trwałości lasów. Z tym ostatnim można by dyskutować, Lasy Państwowe to „firma” przynosząca ogromne zyski. Te pieniądze nie są inwestowane w ochronę lasów, tylko przelewane do budżetu państwa.

Leśnicy przypominają przy okazji, że na obszarach, na których świerków jest dużo, bez interwencji człowieka las z powodu umierania tych drzew będzie martwy. To prawda, ale… świerki, o których mowa, są w puszczy elementem sztucznym. Podatność Puszczy Białowieskiej na korniki jest skutkiem działalności człowieka przed dziesiątkami lat. Wycinanie tych drzew wcale nie spowoduje, że problem zniknie. To popełnianie tego samego błędu, czyli ingerencja w las.

Profesorze Janie Szyszko, nie idź tą drogą!

 

 

24 komentarze do O wycince Puszczy słów kilka

Type on the field below and hit Enter/Return to search