Nauka To Lubię

Oficjalna strona Tomasza Rożka

Pożary widziane z kosmosu

W Kalifornii od kilku tygodni szaleją pożary. Serwisy telewizyjne czy internetowe pełne są apokaliptycznych zdjęć, ale ja postanowiłem pokazać wam zdjęcia z kosmosu. Są straszne i… hipnotyzujące.

W Kalifornii od kilku tygodni szaleją pożary. Serwisy telewizyjne czy internetowe pełne są apokaliptycznych zdjęć, ale ja postanowiłem pokazać wam zdjęcia z kosmosu. Są straszne i… hipnotyzujące.

 

Pożary zniszczyły albo niszczą setki tysięcy hektarów lasu. W sumie z domów ewakuowano kilkaset tysięcy ludzi. Ogień dotarł już do Los Angeles, płonie dzielnica Bel Air na terenie której znajduje się kampus znanego na całym świecie Uniwersytetu Kalifornijskiego.

Pożary w tej części Stanów to żadna nowość, ale tegoroczne są szczególnie groźne, bo towarzyszy im suchy i gorący wiatr fenowy, który wieje w porywach z prędkością do 130 km/h. Taki wiatr w południowej Kalifornii wieje od października do marca, z północnego wschodu, od strony gór Sierra Nevada.

Wiatrem fenowym jest np. nasz wiatr halny, czyli ciepły, suchy i porywisty wiatr, wiejący ku dolinom. Taki wiatr powstaje na skutek różnic ciśnienia pomiędzy jedną a drugą stroną grzbietu górskiego. Po nawietrznej stronie grzbietu powietrze unosi się ochładzając oraz pozbywając się pary wodnej. Po stronie zawietrznej powietrze opada ocieplając się.

A wracając do pożarów w Kalifornii. W tym roku są one tak dotkliwe także dlatego, że wczesną wiosną w Kalifornii spadły wyjątkowo obfite deszcze. To spowodowało szybki wzrost niskiej roślinności porastającej zbocza. Od marca jest tam jednak susza. NASA szacuje, że mamy właśnie do czynienia z okresem dziesięciu najsuchszych miesięcy w historii Południowej Kalifornii. Od 10 miesięcy nie spadła tam nawet jedna kropla wody. Ta niska, bujna na wiosnę, ale teraz wysuszona na proch roślinność stała się doskonałą pożywką dla pożarów.

Dzisiaj w Kalifornii szaleje sześć dużych pożarów i kilka mniejszych. Spaliło się kilkaset domów i setki tysięcy hektarów lasu. Straty liczone są w setkach miliardów dolarów.

Zdjęcia w większości zostały zrobione przez spektroradiometr obrazu (MODIS) na pokładzie satelity NASA oraz Multi Spectral Imager (MSI) z satelity Sentinel-2 Europejskiej Agencji Kosmicznej.

A photo taken from the International Space Station and moved on social media by astronaut Randy Bresnik shows smoke rising from wildfire burning in Southern California, U.S., December 6, 2017. Courtesy @AstroKomrade/NASA/Handout via REUTERS ATTENTION EDITORS – THIS IMAGE HAS BEEN SUPPLIED BY A THIRD PARTY. – RC11C90C8420

Przy okazji, zapraszam do subskrypcji mojego kanału na YT ( youtube.com/NaukaToLubie ) i polubienia fanpaga na Facebooku ( facebook.com/NaukaToLubie )

Brak komentarzy do Pożary widziane z kosmosu

Co najbardziej skraca życie Polakom? Przeanalizowały to badaczki z Łodzi

Rak płuc kradnie już Polkom więcej lat życia niż rak piersi. A u mężczyzn roczna liczba samobójstw przerasta liczbę ofiar wypadków komunikacyjnych. Badaczki z Łodzi przyjrzały się, dlaczego Polacy nie…

Rak płuc kradnie już Polkom więcej lat życia niż rak piersi. A u mężczyzn roczna liczba samobójstw przerasta liczbę ofiar wypadków komunikacyjnych. Badaczki z Łodzi przyjrzały się, dlaczego Polacy nie żyją tak długo, jakby mogli.

„Chciałyśmy zbadać, które przyczyny zgonu są teraz w Polsce najbardziej istotne z ekonomicznego i społecznego punktu widzenia. I jak to się zmieniło w ciągu 15 lat XXI wieku” – opowiada w rozmowie z PAP dr Małgorzata Pikala z Uniwersytetu Medycznego w Łodzi. Jej badania – prowadzone wspólnie z prof. Ireną Maniecką-Bryła z łódzkiego UM – publikowane były w prestiżowym „Scientific Reports”. 

Badaczki z łódzkiego UM zanalizowały dane z GUS na temat wszystkich zgonów Polaków w latach 2000-2014. Średnia długość życia mężczyzn w Polsce w 2014 r. wynosiła 73,7 lat, a kobiet – 81,7. Od 2000 r. te średnie wzrosły odpowiednio o 4,1 i 3,7 lat. Jednakże pomimo tych pozytywnych zmian, długość trwania życia Polaków różni się na niekorzyść od większości krajów europejskich. Wśród 44 krajów Europy Polska zajmowała pod tym względem w 2014 roku 28. miejsce w grupie mężczyzn i 25. miejsce w grupie kobiet.

JAK POLICZYĆ UTRACONE LATA ŻYCIA?

Badaczki analizując przyczyny tych zgonów i ich znaczenie dla społeczeństwa zastosowały zamiast tradycyjnych współczynników zgonów współczynnik SEYLL – oparty o utracone lata życia. To współczynnik dość nowy, ale stosowany już na świecie, m.in. przez Światową Organizację Zdrowia. SEYLL – w uproszczeniu – uwzględnia, ile lat utraciła przedwcześnie zmarła osoba. „Kiedyś uwzględniało się w tym współczynniku długość życia w Japonii, bo Japończycy biją rekordy w długowieczności. Teraz oblicza się to według specjalnych tablic, skonstruowanych w oparciu o najniższe obserwowane wskaźniki umieralności dla każdej grupy wieku w krajach liczących ponad 5 milionów ludności” – mówi dr Pikala. Tablice te wykazują, ile powinna – w modelowej sytuacji – przeżyć osoba w danym wieku. Według tego wskaźnika np. śmierć noworodka oznacza 86 utraconych lat życia, 30-latka to 54 lat straty, 60-latka – 27 lat, a 100-latka to 2 utracone lata życia.

„Utracone lata życia są o tyle lepszym miernikiem, że bardziej uwzględniają skutki społeczne i ekonomiczne przedwczesnej umieralności” – mówi badaczka z łódzkiego UM. I podaje przykład, że zgony osób młodych są dla społeczeństwa większym obciążeniem niż osób w sędziwym wieku.

Z wyliczeń wynika, że w przeliczeniu na 10 tys. mieszkańców Polski w 2000 r. mężczyźni tracili 2500 lat życia, a w 2014 r. mniej, bo prawie 2200 lat. U kobiet współczynnik ten wynosił odpowiednio 1430 i 1270 lat. Najwięksi złodzieje życia w Polsce to choroby układu krążenia, nowotwory złośliwe, zewnętrzne przyczyny zgonów (w tym przede wszystkim wypadki komunikacyjne i samobójstwa) oraz choroby układów trawiennego i oddechowego.

TRZY GRUPY PRZYCZYN

Naukowcy podzielili przyczyny zgonu na trzy najważniejsze grupy. W pierwszej grupie są m.in. choroby zakaźne, pasożytnicze, związane z ciążą i porodem, a także niedożywieniem. „To grupa istotna w krajach słabo rozwiniętych, ale w Polsce – najrzadziej spotykana” – skomentowała dr Pikala. Drugą grupą przyczyn zgonów są przewlekłe choroby niezakaźne – m.in. nowotwory czy choroby układu krążenia. „To najczęstszy powód zgonów w krajach rozwiniętych, również w Polsce” – powiedziała rozmówczyni PAP. Trzecia zaś grupa to zewnętrzne przyczyny zgonu – wypadki, samobójstwa.

PROSIMY NIE PALIĆ!

Druga grupa przyczyn śmierci – przewlekłe choroby niezakaźne – to w Polsce prawie 80 proc. wszystkich utraconych lat życia mężczyzn i 90 proc. utraconych lat kobiet. Chociaż współczynnik SEYLL w przypadku tych przyczyn spada (to dobry znak), są grupy osób, w których obserwuje się niekorzystne zmiany. „Na przykład zwiększa się liczba lat życia utraconych przez kobiety z powodu nowotworów, zwłaszcza raka płuc” – opowiada dr Pikala. I dodaje: „Zaskakujące jest, że odsetek lat życia utraconych z powodu raka płuc jest wyższy niż z powodu raka piersi. Do niedawna było odwrotnie” – opowiada badaczka.

A to oczywiście sprawka papierosów. Dr Pikala opowiada, że w ostatnim 15-leciu odsetek palących mężczyzn spadł z 43 do 33 proc. A odsetek palących kobiet się nie zmienił – utrzymuje się na poziomie 23 proc. To, że rak płuc u kobiet jest teraz silniej widoczny w przyczynach zgonu, ma też związek z kulturą palenia. Co druga kobieta, która urodziła się między 1940 a 1960 r. jest (lub była) palaczką. „Dopiero teraz – obserwując przyczyny zgonów – widzimy skutki tak wysokiego odsetka palaczek z tamtych roczników” – opowiada dr Pikala.

U MĘŻCZYZN SAMOBÓJSTW WIĘCEJ NIŻ WYPADKÓW

Zewnętrzne przyczyny zgonów (trzecia grupa) odpowiadają za 15,7 proc. utraconych lat życia u mężczyzn i 5,3 proc. u kobiet. W tej grupie przyczyn najwięcej lat zabierają Polakom wypadki komunikacyjne. „Ale tu mamy trendy spadkowe” – komentuje dr Pikala. Ale dodaje, że już w przypadku samobójstw o korzystnych zmianach raczej nie może być mowy. Problem dotyczy zwłaszcza samobójstw mężczyzn mieszkających w małych miasteczkach i na wsiach. „Od 2006 r. wśród mężczyzn liczba zgonów z powodu samobójstw przekracza liczbę ofiar wypadków komunikacyjnych. Podobne tendencje obserwuje się i w innych krajach Europy Wschodniej” – mówi statystyk.

„To przez wielu autorów tłumaczonych jest tym, że na skutek zmian społeczno-ekonomicznych wielu mężczyzn odczuwa zmniejszanie swoich szans na rynku pracy, co często jest przez nich postrzegane jako wykluczenie społeczne i może prowadzić do samobójstw” – opowiada. Sugeruje, że liczba samobójstw może się też wiązać z rosnącą ilością wypijanego alkoholu. W Polsce spożycie alkoholu na 1 mieszkańca od 2000 r. systematycznie rośnie: od 7,1 l do 9,4 l czystego alkoholu w 2014 r. Jak zwraca uwagę dr Pikala, statystyki zawyżane są przez mieszkających w mniejszych miastach i wsiach mężczyzn z wykształceniem średnim i podstawowym.

SZCZEPIENIA – ZALEGŁOŚĆ DO NADROBIENIA

Jeśli chodzi o grupę zgonów związaną z chorobami zakaźnymi, niedożywieniem, ciążą i połogiem (pierwsza grupa zgonów) – mamy tu – jeśli chodzi o współczynnik SEYLL – trend spadkowy. „Niemniej jednak mamy problem dotyczący zakażeń górnych i dolnych dróg oddechowych. Tu obserwujemy trend rosnący” – opowiada dr Pikala. I dodaje: „autorzy różnych opracowań tłumaczą to między innymi niechęcią Polaków do szczepień przeciw grypie”. Podczas gdy Rada Europejska rekomenduje, by szczepiło się 75 proc. obywateli, statystyki pokazują, że przeciw grypie szczepi się nie więcej niż 5 proc. Polaków. To nie zapewnia wystarczającej redukcji zachorowań.

Zapytana o to, jak Polacy mogą zadbać o to, by ich życie trwało jak najdłużej, dr Pikala odpowiada: „Porady są proste: prowadzić zdrowy tryb życia, nie mieć nałogów, dbać o aktywność fizyczną, regularnie się badać oraz szczepić”.

PAP – Nauka w Polsce, Ludwika Tomala

Źródło: www.naukawpolsce.pap.pl

7 komentarzy do Co najbardziej skraca życie Polakom? Przeanalizowały to badaczki z Łodzi

Samouczące się systemy informatyczne pomocą dla radiologów

Samouczące się systemy informatyczne, które na podstawie zgromadzonych danych i doświadczeń potrafią automatycznie analizować również nowe dane, mogą się okazać pomocne w pracy radiologów. Tego typu rozwiązanie powstaje właśnie w…

Samouczące się systemy informatyczne, które na podstawie zgromadzonych danych i doświadczeń potrafią automatycznie analizować również nowe dane, mogą się okazać pomocne w pracy radiologów. Tego typu rozwiązanie powstaje właśnie w Gliwicach. Pilotaż planowany jest na przyszły rok.

Chodzi o system do diagnostyki nowotworów i analizy zmian nowotworowych, oparty o obrazowanie dynamiczne po wzmocnieniu kontrastowym.

„To projekt innowacyjny na skalę świata. Być może takie badania są prowadzone w innych ośrodkach na świecie, ale to jest rzecz bardzo nowa, która bardzo może skrócić i ułatwić (kompleksową – przyp. PAP) analizę takich danych medycznych, np. w zastosowaniach onkologicznych (…). Mam nadzieję, że wdrożenie wyników tego projektu stanie się przełomem” – powiedział PAP dr Jakub Nalepa z Wydziału Automatyki, Elektroniki i Informatyki Politechniki Śląskiej w Gliwicach.

Trzonem tego innowacyjnego rozwiązania są techniki uczenia maszynowego (ang. machine learning). Jak tłumaczył Nalepa, systemy informatyczne budowane w oparciu o dotychczas zgromadzone i „zrozumiane” dane (np. obrazy medyczne) pozwalają na skrócenie czasu analizy nowych danych.

Naukowiec wskazał, że techniki uczenia maszynowego mogą być wykorzystywane np. do automatycznej segmentacji obrazów medycznych. „Na podstawie danych, które już mamy – to są dane historyczne – możemy stworzyć klasyfikator, który pozwoli na automatyczną analizę nowych obrazów, które nie były dotychczas +widziane+ przez taki system w czasie +treningu+. Możemy w ten sposób skrócić analizę, która musiałaby być wykonana przez człowieka, a jeżeli skracamy analizę obrazów medycznych, skracamy też czas potrzebny do diagnozy” – tłumaczył Nalepa, który jest jednocześnie kierownikiem ds. badań w tym projekcie z ramienia firmy Future Processing.

Innymi słowy – techniki uczenia maszynowego pozwalają na stworzenie takich algorytmów, które na podstawie opisanych wcześniej danych automatycznie „dostosowują się” do nowych danych, wykorzystując zgromadzone doświadczenia.

Wspomniany system dotyczący obrazowania dynamicznego powstaje we współpracy firmy Future Processing z Centrum Onkologii – Instytutem im. Marii Skłodowskiej-Curie w Gliwicach.

Jak podał Nalepa, obrazowanie dynamiczne po wzmocnieniu kontrastowym polega na skanowaniu wybranego obszaru ciała i analizie dynamiki przepływu środka kontrastowego u pacjenta. Pozwala to na wyznaczenie biomarkerów, opisujących charakterystykę i stopień zaawansowania nowotworu, umożliwiając ocenę ryzyka u pacjentów z chorobą nowotworową.

Dzięki segmentacji tego rodzaju danych medycznych można znaleźć w tych obrazach pewne „podejrzane” obszary, które wymagają dalszej analizy przez radiologa.

„Nasz system na pewno nie zastąpi pracy radiologa, ale będzie mógł pomóc w znalezieniu pewnych +podejrzanych+ regionów w obrazach, które powinny być jeszcze dokładniej sprawdzone” – podkreślił Nalepa.

Projekt badawczo-rozwojowy to nie tylko wyzwania medyczne, ale przede wszystkim algorytmiczne. Wśród nich naukowiec wymienił analizę trudnych danych, czyli zagadnienie z zakresu „big data”. Tłumaczył, że chodzi tu nie tylko o dużą ilość tych danych, duży ich rozmiar, ale też ich heterogeniczność, czyli niejednorodność, a także o dane, których jakość nie jest pewna.

Nalepa zaznaczył więc, że zbudowanie takich systemów klasyfikacyjnych opartych o dane o zróżnicowanej jakości jest w praktyce bardzo trudne i wymaga dobrze przemyślanego wstępnego przetwarzania i selekcji danych, które są najbardziej reprezentatywne, np. dla pewnego rodzaju zmian nowotworowych.

Badania nad tym systemem są jeszcze prowadzone. „Mamy nadzieję, że już w przyszłym roku będziemy gotowi do pierwszych, pilotażowych wdrożeń. Wprowadzenie nowego produktu medycznego na rynek jest długim i żmudnym procesem, dlatego że należy udowodnić, że to, co opracowaliśmy rzeczywiście może być użyte w codziennej praktyce onkologicznej” – zaznaczył Nalepa.

W jego ocenie zapotrzebowanie na tego typu pomoc dla radiologów i fizyków medycznych jest nie tylko w Polsce. „Współpracujemy z ludźmi z Cambridge, więc widzimy, że nie tylko w Polsce jest zapotrzebowanie na tego rodzaju rozwiązania i mam nadzieję, że to w przyszłości zaprocentuje, przede wszystkim dla pacjentów” – podsumował.

Projekt ten o budżecie w wysokości 19 mln zł uzyskał dofinansowanie z Narodowego Centrum Badań i Rozwoju w wysokości 9 mln zł.

W październiku dr Jakub Nalepa otrzymał Nagrodę im. Witolda Lipskiego, przyznawaną młodym polskim uczonym zajmującym się informatyką.(PAP)

autor: Agnieszka Kliks-Pudlik

akp/ agt/

 

 

 

Źródło: www.naukawpolsce.pap.pl

Brak komentarzy do Samouczące się systemy informatyczne pomocą dla radiologów

Komórki nowotworowe niszczone z pomocą nanocząstek – projekt łódzkich naukowców

Łódzcy naukowcy opracowali metodę termicznego niszczenia rozsianych komórek nowotworowych z użyciem nanocząstek. Całe piękno tej metody polega na tym, że niszczymy tylko komórki zwyrodniałe – mówi współtwórca rozwiązania prof. Zbigniew…

Łódzcy naukowcy opracowali metodę termicznego niszczenia rozsianych komórek nowotworowych z użyciem nanocząstek. Całe piękno tej metody polega na tym, że niszczymy tylko komórki zwyrodniałe – mówi współtwórca rozwiązania prof. Zbigniew Kołaciński z Instytutu Mechatroniki i Systemów Informatycznych PŁ.

Przy zastosowaniu tej metody przepływające w układzie krwionośnym nanorurki odnajdują guza nowotworowego zawierającego zdegenerowane komórki i się do nich przyczepiają. Napromieniowanie tkanki falą elektromagnetyczną powoduje nagrzanie komórek nowotworowych powyżej temperatury ich apoptozy wywołując nekrozę, czyli śmierć komórek – mówił PAP współtwórca rozwiązania prof. Zbigniew Kołaciński z Instytutu Mechatroniki i Systemów Informatycznych Politechniki Łódzkiej.

Opracowanie metody niszczenie rozsianych komórek nowotworowych jelita grubego z użyciem nanocząstek to rezultat projektu sponsorowanego przez NCBiR, zrealizowanego w Politechnice Łódzkiej, z udziałem Uniwersytetu Medycznego w Łodzi oraz firmy AMEPOX.

Prof. Kołaciński podkreślił, że naukowcy zajmujący się nanotechnologią wychodzą naprzeciw niedoskonałościom obecnie stosowanych metod leczenia raka – leczenia chirurgicznego, w przypadku którego pacjenci zgłaszają się do lekarza zbyt późno, dlatego często jest to leczenie jedynie paliatywne, czyli przeciwbólowe, a także chemioterapii i radioterapii, których stosowanie niszczy niestety także komórki zdrowe.

„Powstała wśród naukowców, którzy zajmują się nanotechnologią, chęć wprowadzenia nanocząstek do likwidacji komórek rakowych. Te nanocząstki muszą być zasobnikami leków lub innych elementów, które potrafią zniszczyć komórki rakowe” – wyjaśnił prof. Kołaciński.

Na Politechnice Łódzkiej opracowano metodę otrzymywania takich nanozasobników poprzez syntezę nanorurek węglowych różnymi metodami: łukową, metodą plazmy mikrofalowej oraz chemicznego osadzania z fazy gazowej. Nanorurki zawierają w sobie ferromagnetyk np. żelazo, które można następnie rozgrzać przy pomocy fali elektromagnetycznej.

„Jeżeli taki zasobnik wprowadzimy do organizmu i przyłączymy go do komórek rakowych, spełni on rolę mikroźródła grzejnego, które zniszczy te komórki. Jest to zniszczenie całkowite, bo jeżeli temperatura komórki nowotworowej przekroczy 42 stopni C, następuje jej nekroza” – podkreślił prof. Kołaciński.

Martwe komórki nowotworowe są wydalane z organizmu, a komórki zdrowe pozostają dalej żywe. „Całe piękno tej metody polega na tym, że niszczymy tylko komórki zwyrodniałe” – ocenił naukowiec.

Łódzcy uczeni opracowali metodę adresowania nanorurek węglowych jako zasobników do komórek rakowych przy pomocy przyłączonych do kwasu foliowego specyficznych ligandów, które mają zdolność znajdowania komórek rakowych. Takie zasobniki mogą być wstrzykiwane do organizmu, bądź podawane przez skórę lub w formie tabletki. Badacze opracowali także urządzenie do hipertermii, czyli nagrzewania komórek falą elektromagnetyczną.

Nanozasobniki biegną w układzie krwionośnym i odnajdują chore komórki – uruchamiany jest wówczas proces termoablacji tzn. nagrzewania polem elektromagnetycznym. ”Chore komórki podlegają napromieniowaniu falą elektromagnetyczną o wysokiej częstotliwości radiowej, która podgrzewa żelazo w procesie hipertermii niszczącej komórki rakowe” – dodał naukowiec.

Do tego celu łódzcy naukowcy wykorzystują generatory o częstotliwości radiowej pracujące w zakresie od setek kiloherców do rzędu kilkudziesięciu megaherców. „Opracowaliśmy urządzenie do hipertermii, czyli nagrzewania komórek falą elektromagnetyczną, które wraz z patentem adresującym zasobniki do komórek rakowych, tworzy całość, która likwiduje wyłącznie zwyrodniałe komórki” – podkreślił prof. Kołaciński.

Metoda naukowców z PŁ została przebadana na komórkach nowotworowych jelita grubego. Konieczne są jeszcze testy na zwierzętach i testy kliniczne. W końcowej fazie wdrożenia klinicznego projektu naukowcy planują umieszczenie całego człowieka w urządzeniu emitującym kontrolowane dawki pola elektromagnetycznego o częstotliwości radiowej.

Prof. Kołaciński liczy na to, że za 10 lat ta metoda ta będzie skutecznie stosowana w określonych typach nowotworów. „Na pewno nie do wszystkich typów, natomiast w określonych typach nowotworów zostanie sprawdzona i będzie mogła być stosowana” – ocenił naukowiec. (PAP)

szu/ ksk/ zan/

 

Źródło: www.naukawpolsce.pap.pl

Brak komentarzy do Komórki nowotworowe niszczone z pomocą nanocząstek – projekt łódzkich naukowców

Mechanizm samobójczego naśladownictwa

Czyli inaczej efekt Wertera jest znany od wielu lat. Media powinny z wielką powściągliwością pisać o zbrodniach, aktach terroryzmu i samobójstwach. Inaczej biorą na siebie ciężar odpowiedzialności za naśladowców. 

Czyli inaczej efekt Wertera jest znany od wielu lat. Media powinny z wielką powściągliwością pisać o zbrodniach, aktach terroryzmu i samobójstwach. Inaczej biorą na siebie ciężar odpowiedzialności za naśladowców. 

Gdy w mediach pojawia się dużo relacji dotyczących samobójstwa, gdy z tematu robi się główną informację dnia, gdy osoby znane gratulują samobójcy odwagi i determinacji, wzrasta prawdopodobieństwo kolejnych tragedii. Niewiele rzeczy tak jasno jak efekt Wertera ilustruje ogromną odpowiedzialność mediów i pracujących w nich dziennikarzy. Ta odpowiedzialność leży także na naszych barkach. To przecież my linkujemy, komentujemy i udostępniających treści, za które jesteśmy odpowiedzialni.  Światowa Organizacja Zdrowia kilka lat temu stworzyła nawet dokument z wytycznymi dla dziennikarzy jak pisać o samobójstwach, tak, żeby nie prowokować naśladowców.

Statystycznie rzecz ujmując, wzrost samobójstw następujący kilka, kilkanaście dni od nagłośnienia analogicznej tragedii. Z badań wynika, że szczególnie wyraźnie jest widoczny, gdy samobójstwo popełni znana osoba (np. gwiazda filmowa), lub gdy czyn osoby popełniającej samobójstwo jest usprawiedliwiany. Efekt Wertera zauważono także w stosunku do terroryzmu. Czym więcej informacji a aktach terroru, tym częściej się one zdarzają. Gdy przeanalizowano ponad 60 tysięcy zamachów terrorystycznych jakie miały miejsce na całym świecie w latach 1970 – 2002 i skorelowano je z częstotliwością oraz długością ukazujących się na ich temat materiałów prasowych, odkryto, że każde dodatkowe doniesienie o zamachu terrorystycznym zwiększało prawdopodobieństwo zamachów w kolejnym tygodniu o od kilku do kilkunastu procent.

Człowiekiem, który wprowadził do literatury określenie „efekt Wertera” był amerykański socjolog David Philips. Swoje badania prowadził w latach 70tych XX wieku. Już wtedy zauważono, że efekt jest wzmacniany gdy opisy śmierci podaje się ze szczegółami. Gdy samobójca umiera długo i w cierpieniu, gdy upublicznia się wizerunek zrozpaczonych krewnych samobójcy, gdy publikuje się list w których samobójca wyjaśnia swoje motywy i gdy te motywy poddaje się w mediach analizie. Psychologowie twierdzą, że w tym jest tak duży „potencjał identyfikacyjny”, że osoby o słabszej osobowości, osoby, które już wcześniej rozważały samobójstwo są tymi informacjami wręcz popychane do tragicznych czynów.

Obszerną rozmowę na temat efektu Wertera, kilka lat temu (w 2011 roku) opublikował portal Polityka.pl

– Jak to działa? – pytała w wywiadzie Joanna Cieśla.

(prof. Bartosz Łoza – kierownik Kliniki Psychiatrii Warszawskiego Uniwersytetu Medycznego.): Większość z nas bez głębszej refleksji wchłania papkę newsową, którą przekazują nam media, zwłaszcza te szybkie, operujące skrótami. Działa tu mechanizm modelowania – mamy podaną całą gotową historię – o prawdziwym człowieku, prawdziwym życiu, prawdziwych decyzjach, z początkiem i końcem. Nie musimy wkładać żadnego wysiłku w to, żeby ją śledzić, siedzimy w fotelu, a ona jest nam opowiadana. Staje się szczególnie wiarygodna dzięki wykorzystaniu takich technik jak nakręcone drżącą ręką filmy przysłane przez widzów, relacje i amatorskie zdjęcia internautów. To wszystko potwierdza, że to prawda, nie jakaś kreacja. 

Następnie prof. Bartosz Łoza wyjaśnia na czym polega owo modelowanie. Mówi, że osoby z podobnymi problemami co samobójca, rozważające już wcześniej tragiczne w skutkach kroki, dochodzą do wniosku, że skoro samobójca się zabił, one także mogą to zrobić.

– Informacja o zbrodni sprawia, że wszyscy stajemy się gorsi? – pytała Joanna Cieśla z Polityki.

– Niestety. Nie chcę zabrzmieć jak kaznodzieja, ale zło będzie rodzić zło. Wyjaśnia to nie tylko mechanizm modelowania, ale i teoria analizy transakcyjnej amerykańskiego psychoanalityka Erica Berne. Zgodnie z nią nasze emocje, moralność zależą od „głasków”, którymi nieustannie się wymieniamy z innymi ludźmi. Dobry głask to pochwała, zły głask – gdy ktoś na mnie burknął w autobusie. Mogę odburknąć – wtedy oddam negatywny głask. To taka waluta emocjonalna. Nasze portfele są pełne tej waluty, którą przez całe życie wymieniamy się z innymi ludźmi – odpowiada prof. Łoza.

W kolejnych częściach wywiadu profesor tłumaczy, że w tak destrukcyjny sposób działają na nas przede wszystkim informacje prawdziwe. Stąd często emitowane filmy w których dochodzi do strzelanin czy innych zbrodni nie mają wpływu na wzrost przestępczości. Natomiast relacjonowanie zbrodni czy tragedii, które rzeczywiście miały miejsce, szczególnie, gdy te relacje są bardzo emocjonalne, mogą nakłaniać do samobójczych kroków.

Efekt Wertera swoją nazwę zawdzięcza imieniu głównego bohatera napisanej przez Goethego powieści „Cierpienia młodego Wertera”. Po jej wydaniu (w 1774 roku) bodaj po raz pierwszy zauważono tzw. mechanizm samobójczego naśladownictwa.

Historia nieszczęśliwie zakochanego Wertera, który ostatecznie popełnił samobójstwo, pchnęła tysiące młodych ludzi nie tylko w Niemczech ale i w wielu innych krajach Europy do odebrania sobie życia.

2 komentarze do Mechanizm samobójczego naśladownictwa

Ukryta komnata

Ukryta komnata, promienie kosmiczne i piramidy. Nie, to nie jest streszczenie taniego filmu science-fiction. Streszczenie tekstu z Nature

To podobno pierwsze znalezisko w piramidzie Cheopsa od XIX. I to od razu z grubej rury. Magazyn Nature napisał, że w jednym z najbardziej monumentalnych grobowców odkryto tajemniczą komnatę. Jej długość jest szacowana na kilkadziesiąt metrów, a o tym, że w ogóle istnieje dowiedziano się dzięki analizie… promieni kosmicznych. Jak tego dokonano?

Czerwoną strzałką zaznaczyłem odkrytą komnatę 

Składnikiem  strumienia cząstek, które docierają do nas z kosmosu są miony. A ściślej mówiąc, miony powstają jako cząstki wtórne w wyniku rozpadu mezonów w wyższych warstwach ziemskiej atmosfery. Miony mają cechy elektronów, ale są ponad 200 razy od nich cięższe. Strumień mionów jest dość duży, bo w każdej sekundzie, przez metr kwadratowy powierzchni Ziemi przelatuje ich prawie 200. Miony nie omijają także nas, ale nie są dla nas groźne. Od jakiegoś czasu fizycy nauczyli się je wykorzystywać praktycznie.

 

Wiadomo ile mionów leci na nasze głowy. Jeżeli na ich drodze postawimy przeszkodę, część z nich, w niej ugrzęźnie. Im gęstsza ta przeszkoda, tym ugrzęźnie ich więcej. Ustawiając w odpowiedni sposób detektory mionów, jesteśmy w stanie wykonać trójwymiarowy obraz skanowanego obiektu. Zasada działania tego pomiaru jest identyczna co działania tomografu komputerowego. Jest źródło promieniowania (promienie Roentgena, zwane promieniami X) i są detektory. Robiąc odpowiednio dużo pomiarów pod różnymi kątami, jesteśmy w stanie z dużą precyzją określić kształt, budowę i strukturę tych części ludzkiego ciała, które dla oka lekarza są zakryte.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W przypadku piramidy Cheopsa w Gizie nie było lekarzy, tylko fizycy i archeologowie, nie było promieni X, tylko kosmiczne miony. Nie było tomografu medycznego, tylko zmyślny system detektorów. Ale udało się dokonać tego samego. Znaleziono obiekt, a właściwie pustą przestrzeń, która wcześniej była przed wzrokiem badaczy zakryta.

Nie wiadomo czym jest tajemnicza komnata. Rozdzielczość tej metody jest zbyt mała, by stwierdzić czy znajdują się w niej jakieś obiekty. Może więc być pusta. Ale może też być pełna skarbów. Pusta przestrzeń znajduje się nad tzw. Wielką Galerią, czyli korytarzem prowadzącym do Komory Królewskiej. Nie wiadomo też, czy komnata (pusta przestrzeń) była zamurowana na etapie budowy piramidy, czy ktokolwiek po jej wybudowaniu do niej zaglądał. Piramida Cheopsa powstała w okresie tzw. Starego Państwa, czyli około 2560 roku p.n.e. Budowano ją zaledwie przez 20 lat. Jak na metody i technologie jakimi wtedy dysponowano, to tempo ekspresowe.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

7 komentarzy do Ukryta komnata

Nagroda za mikroskop

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek, bez uszkadzania ich.

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek.

Jacques Dubochet, Joachim Frank, Richard Henderson

„for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”

Co niezwykle ważne, dzięki nagrodzonej metodzie, jesteśmy w stanie zobrazować nieuszkodzoną cząsteczkę białka w jej „naturalnym” środowisku. Uszkodzone białko nie niesie dla nas interesującej informacji. Nie jesteśmy w stanie zobaczyć jak ono reaguje, jak łączy się z innymi cząsteczkami, w skrócie, jak ono funkcjonuje w swoim naturalnym środowisku (a nie na przysłowiowym szkiełku) czyli we wnętrzu żywej komórki czy we wnętrzu poszczególnych organelli komórki. Białka to cegiełki z których wybudowane jest życie. Przy czym analogia do cegły i budynku nie jest wystarczająca. Białka nie są pasywnymi elementami naszego ciała. Białka (jako hormony) regulują czynności a nawet modyfikują struktury tkanek (tkanek, które też są zbudowane z białek). Bez poznania białek, tego jak są zbudowane, jak funkcjonują, jak łączą się w większe kompleksy, nie ma najmniejszej szansy żeby zrozumieć życie.

Trzej panowie Jacques Dubochet (Szwajcaria), Joachim Frank (USA), Richard Henderson (Wielka Brytania) stworzyli metodę by w skuteczny sposób białka badać. Nie w środowisku sztucznym, ale naturalnym. Bo tylko złapane w akcji białko daje nam się poznać. Tylko wtedy widzimy jak rzeczywiście funkcjonuje cały mechanizm, w którym bierze ono udział. Jak białko podglądnąć tak, by rzeczywiście zobaczyć jak ono funkcjonuje? Zamrozić. Ale bardzo szybko, po to by nie zdążył przebiec proces krystalizacji. Zamrażanie – jeżeli zostanie odpowiednio przeprowadzone – niczego nie uszkadza i niczego nie fałszuje. Mrożąc kolejne próbki, jesteśmy w stanie zrobić video, klatka po klatce pokazujące procesy, które przebiegają niezwykle szybko. Złożenie tych klatek w jedną całość umożliwia nie tylko prześledzenie procesu tak jak gdyby było się jego naocznym świadkiem, ale także przyjrzenie się poszczególnym jego aktom z różnej perspektywy. I tak w trójwymiarze można zobaczyć splatanie i rozplatanie długich nici białkowych. Można zobaczyć łączenie się mniejszych białek w większe kompleksy czy np. działanie receptorów białkowych.

– Te metody były przełomowe w medycynie molekularnej. Dzięki nim nie tylko możemy patrzyć na narządy i komórki. Możemy zejść głębiej, możemy śledzić jak wyglądają i działają pojedyncze cząsteczki w szczegółach, o jakim jeszcze niedawno nam się nie śniło. – powiedział Joachim Frank, jeden z laureatów tegorocznego Nobla z chemii, w rozmowie telefonicznej którą zaaranżowano w trakcie ogłaszania werdyktu.

Na zdjęciu głównym model wirusa zapalenia mózgu otrzymany dzięki technice mikroskopii krioelektronowej.

1 komentarz do Nagroda za mikroskop

Nobel z fizyki za fale

Prace nad wykrywaniem i analizą fal grawitacyjnych musiały kiedyś zostać uhonorowane Nagrodą Nobla. No i stało się.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów po raz kolejny będzie mówiło się o falach grawitacyjnych. Kilkanaście dni temu dzięki pracy kolaboracji LIGO/VIRGO zmarszczki przestrzeni były w czołówkach serwisów na całym świecie. Dzisiaj też będą. Z powodu Nagrody Nobla z fizyki.

Rainer Weiss, Barry C. Barich, Kip S. Thorne

„for decisive contributions to the LIGO detector and the observation of gravitational waves”

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

8 komentarzy do Nobel z fizyki za fale

Nobel za biologiczny zegar

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Jeffrey C. Hall, Michael Rosbash and Michael W. Young

for their discoveries of molecular mechanisms controlling the circadian rhythm

Ta nagroda w pewnym sensie łączy medycynę, a właściwie fizjologię z astronomią. Czasami chyba zapominamy, że życie nie funkcjonuje w oderwaniu od otoczenia. Podział szkolnych zajęć na przedmioty (biologia, fizyka, chemia,…)  nie pomaga zrozumieć złożoności tego świata. Jak to się dzieje, że czujemy się senni gdy zapada zmrok? Jak to się dzieje, że inne zwierzęta budzą się wtedy gdy zachodzi słońce? Co dzieje się w naszym organizmie gdy za krótko śpimy? I wtedy gdy podróżując samolotem, zmieniając strefy czasowe nasz biologiczny zegar totalnie się pogubi? Na te pytania bardzo długo nie było konkretnej odpowiedzi. Teraz już jest. I to – co może zadziwiać – udało się je uzyskać m.in dzięki badaniom muszek owocówek. Swoją drogą, tym małym niepozornym owadom, ktoś powinien wystawić chyba pomnik. Niewiele jest organizmów żywych, które bardziej przysłużyły się nauce. I to wielu dziecinom równocześnie. No ale to inny temat.

A wracając do pór dnia i nocy. Pór niższej temperatury i wyższej. Pór odpoczynku i aktywności. Te pory są skutkiem obrotu Ziemi wokół własnej osi. Mieliśmy (my czyli ziemskie życie) grubo ponad 3 miliardy lat na dostosowanie się do tego cyklu. Więcej, wzrastaliśmy, ewoluowaliśmy w świecie który jest cykliczny. Różnych cykli mamy wiele, ale ten który bodaj ma n nas największy wpływ to właśnie cykl dnia i nocy. Nawet najbardziej prymitywne bakterie mają biologiczny zegar. Działa na tyle dobrze, że my mamy go w zasadzie w niezmienionej wersji.

W zegarze o którym mowa nie chodzi tylko o to żeby wiedzieć kiedy mamy się położyć do łóżka. W zasadzie – w przypadku ludzi – to jest tylko skutek uboczny. Biologiczny zegar taktuje tym wszystkim co w naszym ciele dzieje się poza naszą świadomością. Metabolizmem, temperaturą ciała, produkcją i wydzielaniem hormonów a także aktywnością seksualną, cyklami życiowymi czy nawet poczuciem głodu i sytości. Tegoroczni laureaci Nagrody Nobla zostali uhonorowani za opisanie tego jak ten skomplikowany system działa.

Już kilkaset lat temu zauważono, że rośliny pozbawione dostępu światła zachowują się tak, jak gdyby to światło cały czas okresowo do nich docierało. Tak jak gdyby kiedyś nastawiony (nakręcony) zegar teraz tykał i działał niezależnie od tego czy światło pada na liście czy też nie. Podobnie zachowują się zwierzęta, w tym ludzie. To dlatego mamy kłopoty z zaśnięciem i koncentracją gdy szybko zmienimy strefę czasową. Tych kłopotów by nie było, gdyby nasz wewnętrzny zegar automatycznie dostosowywał się do pory dnia i nocy.

W latach 70tych XX wieku zaczęto poszukiwać źródeł (mechanizmu) tego biologicznego zegara. Najpierw – a jakże – u muszek owocówek. Poszukiwano i znaleziono – w największym skrócie – mechanizmy w którym w zależności od pory dnia (natężenia światła) produkowane są specyficzne białka (nazwane PER). Te gromadzą się w ciągu nocy, a rozpadają się w ciągu dnia. Badacze odkryli u muszek gen, który gdy zostanie uszkodzony zaburza rytm dobowy. Gen został wyizolowany dopiero w połowie lat 80tych XX wieku. To w nim był przepis na produkcję wspomnianego wcześniej białka PER. Tego, które gromadzi się w ciagu nocy a rozpada w ciagu dnia. Dziesięć lat później, w połowie lat 90tych odkryto drugi gen kodujący „zegarowe” białko. I gen i białko nazwano TIM. Białka TIM i PER łączą się z sobą wtedy gdy noc przechodzi w dzień. To sygnał żeby komórka wstrzymała produkcję biała PER. Mamy wiec produkcję białka i wiemy co powoduje że wstrzymywana jest jego produkcja. A jaki czynnik powoduje, że produkcja PER znowu rusza z kopyta? Skąd komórka wie, że dzień zamienia się w noc? Pod koniec lat 90tych odkryto trzeci gen odpowiedzialny za tykanie biologicznego zegara. gen DBT. I tak zamyka się 24godzinny cykl.

Zegar tyka nawet wtedy gdy przez jakiś czas organizm odcięty jest od światła. Z czasem, zegar się jednak rozregulowuje. U roślin ten okres swego rodzaju bezwładności wynosi kilka dni. U człowieka od 2-3 dni (stąd niektórzy są w stanie dość łatwo przestawiać się na pracę w nocy) do kilkudziesięciu (dlatego istnieją osoby, które nie są w stanie przyzwyczaić się do zmiany czasu o godzinę). Gdy zegar się zatrze, nie staje w miejscu, tylko zaczyna odmierzać czas nieprawidłowo. Np.  u niektórych wydłużając dobę dwukrotnie a u innych skracając o kilka godzin. Wiemy to, bo kilku śmiałków w ramach eksperymentu zamknęło się w kompletnych ciemnościach na czas od kilkunastu do kilkudziesięciu dni. W naszym przypadku sercem zegara nie jest jednak pojedyncza komórka, tylko szyszynka, czyli ta cześć mózgu, która „widzi” czy jest dzień czy noc. To ona daje sygnał, który jest podchwytywany przez miliardy drobnych zegarków już na poziomie komórkowym. Gdyby tykały jak zegarki ze wskazówkami, wydawalibyśmy dźwięki jak zakład zegarmistrza.

2 komentarze do Nobel za biologiczny zegar

Skąd nazwy huraganów? 

Jose, Maria i Lee, to – na dzisiaj – najgroźniejsze huragany szalejące po północnym Atlantyku. Skąd biorą się imiona tych zjawisk? Co mają z tym wspólnego feministki i jaka jest różnica pomiędzy huraganem, orkanem, cyklonem i tajfunem?

Jose, Maria i Lee, to – na dzisiaj – najgroźniejsze huragany szalejące po północnym Atlantyku. Skąd biorą się imiona tych zjawisk? Co mają z tym wspólnego feministki i jaka jest różnica pomiędzy huraganem, orkanem, cyklonem i tajfunem?

Zacznę od tego ostatniego. Cyklon to nazwa zbiorcza i mieści w sobie huragany, tajfuny i burze tropikalne. Każde z tych zjawisk jest cyklonem, tyle tylko, że występującym w innych częściach świata. Wszystkie powstają nad ciepłymi i spokojnymi oceanami i wszystkie wirują.

Huragany szaleją na Atlantyku i na wschodnim Oceanie Spokojnym (Pacyfiku).

Tajfuny atakują na Pacyfiku między 180 i 100 południkiem. Innymi słowy są zagrożeniem dla wybrzeży Azji.

Orkany powstają na Oceanie Indyjskim, ale ostatnio tą nazwą określa się także cyklony uderzające w wybrzeże Europy.

I ostatnia – burza tropikalna (lub sztorm tropikalny) stosuje się do opisu cyklonów o mniejszej sile.

A co z nazwą? Irma, Harvey, kilka lat temu Katrina a w przyszłym roku Alberto, Beryl i Chris… zaraz zaraz. Skąd wiem jakie imiona będą nosiły cyklony w 2018 roku? Ano stąd, że są one już ustalone. Ale od początku. Imiona cyklonom nadaje się od ponad 100 lat. Wcześniej robiono to okazjonalnie. Cel był tylko jeden. Łatwiej nam zapamiętać imię niż cyfrę albo kod literowy. Zbadano, że ludzie czują większy respekt przed cyklonem który łatwiej zapamiętują, lepiej się też przygotowują do jego nadejścia.

Przez kilkadziesiąt lat huragany nazywano tylko imionami żeńskimi. Pod koniec lat 70tych XX – pod wpływem protestów feministek – zaczęto stosować imiona na przemian, imiona żeńskie i męskie. Po to by nie było nieporozumień, po to by nie nadano przez pomyłkę dwóch różnych nazw temu samemu cyklonowi, po to by w krótkim okresie nie nazwano dwóch zjawisk tym samym imieniem, listę z nazwami ustala się sporo do przodu. I tak stworzono listę imion na każdą literę alfabetu po jednym. Następnie zrobiono z nich sześć zestawów, każdy po 21 imion, które ułożono w kolejności alfabetycznej. Każdego roku obowiązuje jeden zestaw. Ten sam powtórzy się dopiero za 6 lat. Lista imion, która obowiązuje w tym roku, będzie obowiązywała dopiero w 2023 roku. I znowu pojawią się cyklony Harvey, Irma, Jose, Maria i Lee. Co gdy w którymś roku pojawi się więcej niż 21 dużych cyklonów? Wtedy nadawane im są nazwy greckie. Teraz mamy przełom września i października ale do końca listy imion na ten rok mamy jeszcze 8 pozycji.

Czasami imiona z listy są wykreślane. Dzieje się to wtedy, gdy cyklon nazwany jakimś imieniem zebrał wyjątkowo krwawe żniwo. Na miejsce wykreślonego imienia, na międzynarodowych konferencjach meteorologów, wybiera się inne imię. Musi zaczynać się na tę samą literę i musi być imieniem żeńskim (gdy wykreślono żeńskie), lub męskim (gdy wykreślono męskie). W 2005 roku wybrzeże USA spustoszył huragan Katrina. Na próżno szukać tego imienia na liście. Tak samo jak Sandy, Mitch czy Tracy.

Jakie imiona zostały na liście na ten rok? Nate, Ophelia, Philippe, Rina, Sean, Tammy, Vince i Whitney. Miejmy nadzieję, że tych imion nie będzie trzeba nadawać.

hurricaneNames1-01

1 komentarz do Skąd nazwy huraganów? 

Za dużo liczb.

To nie tak, że nie mamy lekarstwa na raka z powodu prostej niewiedzy. To nie tak, że zatruwamy środowisko z powodu niedoborów energii. Dzisiejszy świat cierpi z powodu nadmiaru. Niemal wszystkiego. Szczególnie nadmiaru danych.

To nie tak, że nie mamy lekarstwa na raka z powodu prostej niewiedzy. To nie tak, że zatruwamy środowisko z powodu niedoborów energii. Dzisiejszy świat cierpi z powodu nadmiaru. Niemal wszystkiego.

Lek na raka, szczepionka przeciwko malarii czy panaceum na choroby serca i nadwagę nie zostaną odkryte, dopóki nie nauczymy się wyciągać wniosków z bardzo dużej ilości danych. Danych wszelakiego rodzaju. Statystycznych, środowiskowych czy tych medycznych. Danych jest tak wiele, że nie sposób sobie z nimi poradzić. Chyba że do ich analizy zatrudnimy komputery.

Lek z komputera

W zasadzie od wielu lat to się już dzieje. Z danych, które do nich napływają, komputery wyciągają wnioski, a te są następnie wykorzystywane w życiu codziennym. Tak, to komputery regulują światłami na skrzyżowaniach dużego miasta. To, czy włączyć na którymś zielone, czy pozostawić czerwone, zależy od natężenia ruchu w całym mieście, od priorytetowych szlaków komunikacyjnych, od prac drogowych na szlakach alternatywnych, a nawet od tego, czy w kierunku miasta zbliża się np. burza. Człowiek nie poradziłby sobie z tak dużą ilością danych, nie byłby w stanie podejmować na ich podstawie decyzji.

escherichia-coli-1441194-1279x1229

Takich przykładów jak ruch w mieście jest znacznie, znacznie więcej. Podobnie działają systemy ruchu lotniczego, ale także linie produkcyjne w fabrykach czy systemy do analizy danych w laboratoriach naukowych, np. podczas projektowania leków. Żeby wprowadzić na rynek nowy lek, trzeba sprawdzić tysiące, a czasami miliony różnych kombinacji cząsteczek chemicznych. Każda najmniejsza zmiana budowy cząsteczki chemicznej leku, czasami oznaczająca „przestawienie” jednego atomu, może zmieniać jego działanie. Nie sposób eksperymentalnie sprawdzić wszystkich możliwych kombinacji, bo trwałoby to latami i kosztowałoby miliardy. Także tutaj z pomocą przychodzą komputery, które same dochodzą do pewnych wniosków, same domyślają się efektu. Do ostatecznego sprawdzenia pozostają tylko te wersje cząsteczki chemicznej, które – zdaniem oprogramowania – budzą największe nadzieje. I tak, od ruchu ulicznego, poprzez medycynę, bezpieczeństwo, fizykę (nikt już dzisiaj nie projektuje eksperymentów naukowych bez wcześniejszego uruchomienia symulacji komputerowych oraz systemów analizujących ogromne pakiety danych), telekomunikację, po zmiany społeczne… Wszędzie mamy za dużo danych, za dużo informacji, z którymi jakoś musimy sobie poradzić. Na szczęście nie jesteśmy sami, pomaga nam w tym tak zwana sztuczna inteligencja.

Podatki w Brazylii

Dlaczego tak zwana? Bo pomiędzy inteligencją człowieka czy nawet zwierzęcia a inteligencją maszyny jest sporo różnic. U nas inteligencja wiąże się w jakiś sposób ze świadomością i emocjami. U maszyn tylko (albo aż) – z umiejętnością uczenia się i wyciągania wniosków. Wielu ludzi boi się sztucznej inteligencji, bo przypisuje jej cechy, które mają inteligentni ludzie. Inteligentni, choć nie zawsze prawi. Stąd wizje buntujących się komputerów czy systemów, które mają swoje własne zdanie. Oczywiście odmienne od naszego. Ten bunt – jak się obawiamy – nie będzie polegał na tym, że nasze komputery zaczną nam robić głupie żarty, tylko na tym, że np. system komputerowy odetnie zasilanie energetyczne dużego miasta. To byłaby prawdziwa tragedia, tyle tylko, że w praktyce taka sytuacja dzisiaj jest niemożliwa. Nie dlatego, że systemy komputerowe nie rządzą zasilaniem, ale dlatego, że nie mają one woli i świadomości. Nie robią z własnej inicjatywy niczego, na co nie pozwoli im programista. Człowiek inteligentny to ktoś, o kim powiemy, że jest samodzielny i aktywny. Sztuczna inteligencja jest czymś, co jest bierne i podporządkowane człowiekowi. Owszem, radzi sobie świetnie z tasowaniem dużej ilości informacji, z sortowaniem ich i wyciąganiem z nich wniosków, ale nie potrafi choć na milimetr wyjść poza to, na co pozwoli jej programista.

Polska firma Cognitum stworzyła system, który jako jeden z najlepszych na świecie potrafi znajdować regularności czy wzory w dużych zbiorach danych. Jak mówią jego twórcy, ich system „pozwala wiązać fakty w morzu danych”. I robi to tak dobrze, że został włączony w ogromny program, którego celem jest wykrywanie nieprawidłowości podatkowych w… Brazylii. Wyłudzenia podatków można wykryć, analizując faktury, tyle tylko, że w tak dużym kraju jak Brazylia codziennie dochodzi do milionów transakcji. To powoduje, że w praktyce praca człowieka, a nawet tysiąca ludzi, jest skazana na porażkę. Co innego, jeśli chodzi o system komputerowy, który te faktury sprawdza i wyłapuje nieprawidłowości. W czasie rzeczywistym! Dzięki polskim programistom powstał system, który zainstalowano w urzędach skarbowych w całym kraju. Wyłapuje on nieprawidłowości od razu po tym, jak faktura zostanie wczytana do systemu. Co ciekawe, człowiek posługujący się systemem wcale nie musi być programistą. Z programem może się porozumieć, wpisując komendy w języku nieodbiegającym od tego, którym posługujemy się w rozmowie z innymi ludźmi. Może też te komendy po prostu wymówić. Program zrozumie.

Samo z siebie?

Ważną cechą systemu zaprojektowanego przez Cognitum jest to, że uczy się i potrafi wyciągać wnioski. Dzięki temu, jeżeli ktoś choć raz zastosował jakąś metodę na oszukanie urzędu podatkowego i ten trik zostanie wykryty, ta sama sztuczka już nigdy więcej się nie uda. Podobne metody można stosować do walki z bakteriami. One też mogą atakować na wiele różnych sposobów. Człowiek próbuje przewidzieć wszystkie drogi ataku, ale sprawdzenie tych scenariuszy trwałoby bardzo długo. Co innego, gdy do pomocy zaprosi się odpowiednio zaprojektowany system komputerowy. Mówimy o nim, że jest wyposażony w sztuczną inteligencję, ale tak naprawdę powinno się mówić o programach wyposażonych w umiejętność nauki i wyciągania wniosków.

digital-dreams-1155928-1280x960

Nasz mózg działa inaczej niż komputer, a inteligencja u ludzi i ta sztuczna, czyli komputerowa, to dwie różne rzeczy. Dlaczego tak się dzieje? Dlaczego komputerom nie potrafimy nadać cech naszej inteligencji, z poczuciem osobowości i z własnymi celami włącznie? Po pierwsze, wcale nie jestem przekonany, że to dobry pomysł. A po drugie… Trudno nadawać maszynom cechy, których nie rozumie się u siebie. Nie wiemy, czym jest świadomość, poczucie odrębności. Nie potrafimy tego zdefiniować na poziomie nauk ścisłych. Nie wiemy, które „obwody” w naszym mózgu za to odpowiadają, a więc nie wiemy, jak tą cechą obdarzyć maszyny. Czy kiedyś tę barierę przełamiemy? Czy kiedyś maszyny staną się naprawdę (tak po ludzku) inteligentne? Nie da się tego wykluczyć. Przy czym dzisiaj wydaje się, że są dwie drogi do osiągnięcia tego celu. Będzie to możliwe, gdy sami zrozumiemy, na czym polega nasza świadomość. Gdy tak się stanie, będziemy mogli podjąć decyzję, czy nowo poznaną cechą obdarować maszyny. Jest jednak jeszcze druga opcja. Być może świadomość i poczucie odrębności pojawiają się „same z siebie”, gdy mózg staje się skomplikowany. Może to efekt skali? Może wraz z rozbudową systemów informatycznych, wraz z coraz większym skomplikowaniem programów samoświadomość maszyn pojawi się sama? Bez naszego bezpośredniego udziału i bez naszej wiedzy?

Współczesny świat produkuje tak wiele informacji, że bez pomocy programów, które się uczą i które wyciągają z tej nauki wnioski, nie jesteśmy już w stanie funkcjonować. Tego już się nie cofnie. A jaka będzie przyszłość? Okaże się jutro.

 

Tekst ukazał się w tygodniku Gość Niedzielny
Brak komentarzy do Za dużo liczb.

Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę.

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę.

Ziemia w swoim ruchu dookoła Słońca napotyka co roku w sierpniu rój meteorów zwanych Perseidami. Rój meteorów to kawałki komety, której lodowe jądro stopiło się kiedyś zbliżając do Słońca. Pozostawiła ona wtedy w przestrzeni kosmicznej po sobie ślad w postaci pyłu i małych okruchów skalnych. Ziemia krążąc wokół Słońca przechodzi przez taką strugę i na niebie widzimy meteory. Gdy jest ich dużo, mamy do czynienia z tzw. deszczem meteorów. Podczas takiego deszczu Leonidów (fragmentów komety Tempel-Tuttle występujących w połowie listopada każdego roku) w 1833 roku naliczono aż 200 000 „spadających gwiazd” na godzinę. Perseidy są pozostałością po komecie Swift-Tuttle, a największą ich liczbę – bo aż 300 na godzinę – można zauważyć od 10 do 12 sierpnia. To, że w czasie przechodzenia Ziemi przez rój meteorów widzimy wiele „spadających gwiazd” wcale nie oznacza, że poszczególne bryłki w pasie pozostawionym kiedyś przez kometę znajdują się blisko siebie. Szacuje się, że w czasie maksimum natężenia roju Perseid najmniejsze bryłki bywają od siebie oddalone nawet o 200 km.

Meteory widoczne są jako „spadające gwiazdy”, dzięki grubej, ziemskiej atmosferze. Drobne cząstki pyłu i większe okruchy skalne wpadając z dużą prędkością (od 15 do 75 km/s) w ziemską atmosferę, ocierają się i zderzają z cząsteczkami powietrza, a to z kolei powoduje, że ich powierzchnia się rozgrzewa. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia meteoru zaczyna się topić i wrzeć (bryłka skalna ma wtedy ok. 3000 st. Celsjusza). Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza i w ten sposób widzimy zjawisko świetlne „spadającej gwiazdy”. Można więc powiedzieć, że to co obserwujemy na niebie nie jest świeceniem rozgrzanej bryłki, tylko rozgrzanego dookoła niej powietrza. Aby spadający meteor zobaczyć gołym okiem (w nocy), wystarczy, że ma on masę ok. 0,01 grama i jest wielkości 1 mm. Okruch ważący 1 gram, na niebie rozbłyska się jaśniej niż którakolwiek gwiazda. Z bardziej szczegółowych badań wynika, że meteory zaczynają „świecić” na wysokości nawet 130 km a „gasną” na wysokości 75 km nad Ziemią.

W czasie deszczu meteorów nic nam na Ziemi nie grozi. Nie trzeba się też nigdzie chować, gdyż znakomita ich większość spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Musimy się przyzwyczaić, że codziennością i niejako częścią naszego Świata jest bombardowanie nas przez mniejsze meteoryty. Obok tych, których zupełnie nie widać, stosunkowo dużo jest też takich, które rozbłyskują tylko na ułamek sekundy. Gdy Ziemia nie przechodzi przez żaden z rojów w bezksiężycową noc pojedynczy obserwator może naliczyć 10 „spadających gwiazd” na godzinę. Trafiają się jednak, – choć rzadko – i takie, meteory które świecą dłużej. Te największe mogą powodować nawet efekty akustyczne podobne do grzmotu błyskawicy. Meteory, które są na tyle duże, że nie spalą się całkowicie w ziemskiej atmosferze i spadną nam pod nogi, to tzw. meteoryty. Największe meteoryty to bolidy, i mimo, że kolizje z nimi są bardzo rzadkie, liczne kratery na powierzchni Ziemi świadczą o wielu takich spotkaniach w przeszłości. Największym dotychczas znalezionym meteorytem był meteoryt Hoba. Waży on ok. 60 ton i nadal znajduje się w miejscu swojego upadku w Namibii (Afryka Południowo-zachodnia). Mimo, że takie zderzenie dla naszej planety może zakończyć się katastrofą, są one na tyle rzadkie, że nie należy się ich obawiać.

W określonych porach roku orbita Ziemi przecina orbity, po których poruszają się resztki komet. Zjawisko to na Ziemi obserwuje się jako rój (albo deszcz) meteorów. Corocznie takich rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne na obydwu. Jednym z takich rojów jest widoczny jedynie na półkuli północnej rój Perseid. Ponieważ obserwacje meteorów nie wymaga kosztownych urządzeń, ani specjalnej wytrwałości, a jedynie pogody , biorą w nich udział bardzo często amatorzy. Obserwatorowi na Ziemi wydaje się, że meteory z roju rozbiegają się po niebie we wszystkie strony, tak jakby wychodziły z jednego punktu. Jest to tylko złudzenie, gdyż meteory poruszają się po torach równoległych. Roje meteorów biorą swoje nazwy od gwiazdo zbiorów z których „wylatują”. Jeżeli chodzi o Perseidy tym miejscem jest gwiazdozbiór Perseusza a konkretnie okolice gwiazdy [eta]Per (Miram).

Jak zatem powinno się przygotować do obserwacji meteorytów ? Podstawowym warunkiem obserwacji jest dobra pogoda. Niebo powinno być bezchmurne, ale nie całe. Dobrze byłoby, gdyby noc była bezksiężycowa. Koniecznie trzeba też swoje obserwacje prowadzić w oddali od wszelkich sztucznych źródeł światła (np. miast czy oświetlonych ulic). Przed obserwacjami wskazane jest także ok. 30 minutowe „przyzwyczajenie” oczu do ciemności. I sprawa chyba najważniejsza. Należy przygotować sobie zestaw życzeń. Pragnienie wypowiedziane w czasie spadania gwiazdy zawsze się spełnia.

2 komentarze do Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Jak to się zaczęło?

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

To „manipulowanie” w równaniach  Ogólnej Teorii Względności polegało na dopisaniu do nich dodatkowego członu, tak zwanej stałej kosmologicznej. To ona, na kartce papieru, wszechświat dynamiczny „zamieniała” na statyczny. I prawie wszyscy byli zadowoleni. Prawie. Jedną z osób, które podważały koncepcję wszechświata stacjonarnego był katolicki ksiądz, Georges Lemaitre.

Uparty jak Einstein

Koncepcje Lemaitre’a (swoją teorię nazwał Hipotezą Pierwotnego Atomu) traktowano z pobłażaniem. Lemaitre nie był fizykiem, tylko matematykiem. Gdy spotkał się z Einsteinem (by przekonać go do swojej koncepcji początku wszechświata), ten stwierdził, że Lemaitrowi brakuje wiedzy z zakresu fizyki. To co mówił Lemaitr było w zasadniczej sprzeczności z tym, co powszechnie w jego czasach sądzono. Lemaitr często spotykał się z argumentem, że jego hipoteza jest błędna, bo nawet z rachunków Alberta Einsteina wynika, że wszechświat jest statyczny. No tak, ale z rachunków… nieco „podkręconych”.

Jeszcze na początku lat 20tych XX wieku, za wyjątkiem garstki badaczy spoza głównego nurtu, uważano, że wszechświat jest stały. I wtedy do największego ówcześnie ośrodka astronomicznego, do obserwatorium na górze Wilsona w Kalifornii przyjechał Edwin Hubble. Był już znany w środowisku astronomów jako niepokorny badacz, który ma dosyć oryginalne poglądy. Hubble’a twierdził bowiem, że niewyraźne obłoczki pomiędzy gwiazdami, które obserwowano przez działające już wtedy niemal na całym świecie teleskopy, to nie większe skupiska pyłu międzygwiazdowego czy bliżej nieokreślone mgławice, tylko osobne galaktyki. Pogląd ten był nawet bardziej niż oryginalny, bo powszechnie uważano wtedy, że we wszechświecie jest tylko jedna galaktyka. Galaktyka Drogi Mlecznej.

Hubble odkrywca

Jednym z pierwszych bardzo wyraźnych zdjęć galaktyki jakie Hubbleowi udało się zrobić było zdjęcie galaktyki Andromedy. Świat, nie tylko naukowy był w szoku, gdy Hubbleowi udało się obliczyć (na podstawie pomiaru jasność gwiazd), że najbliższa galaktyka znajduje się ponad milion lat świetlnych od nas. To jedno obliczenie, ta jedna obserwacja „rozszerzyło wszechświat” o miliony, miliardy razy. Hubble odmienił nasze rozumienie wszechświata. Hubble pokazał, że wszechświat to ogromny kosmos, a nasza galaktyka jest niepozornym okruszkiem.

Ale na tym się nie skończyło. OK., wszechświat może i jest o miliardy razy większy niż nam się wydawało, ale czy jest stacjonarny czy dynamiczny – pytano. Kilka lat obserwacji dalszych i bliższych galaktyk pozwoliło Hubble’owi na sformułowanie prawa, które przewróciło do góry nogami wiedzę na temat wszechświata. Analizując światło galaktyk, astronom zauważył, że one się poruszają. Odkrył że czym odleglejsza galaktyka, tym szybciej się od nas oddala. Jeżeli wszystkie galaktyki się od nas oddalają, jeżeli wszystkie oddalają się od siebie, wszechświat się rozszerza. Innego wytłumaczenia nie ma. Łatwo to można sobie wyobrazić. Gdy namalujemy na powierzchni słabo napompowanego balonika kilka kropek a następnie zaczniemy go nadmuchiwać (rozszerzać), kropki zaczną się od siebie oddalać.

Lemetre tryumfuje

W 1931 roku spotkało się trzech badaczy, którzy są chyba głównymi bohaterami tej historii. Hubble, Einstein i Lemetre. To w czasie tego spotkania powstały podstawy współczesnej kosmologii. To wtedy Einstein przekonał się do koncepcji wszechświata dynamicznego. To wtedy zrozumiał swój błąd. I to wtedy stałą kosmologiczną nazwał „największą pomyłką życia”. Trudno mu się dziwić. Wiele lat wcześniej, gdy pracował nad Ogólną Teorią Względności matematyka, jak na tacy podała mu prawdziwy obraz wszechświata. On jednak nie uwierzył.

Jeżeli galaktyki oddalają się od siebie, znaczy, że wczoraj były bliżej siebie, niż są dzisiaj. A rok temu? A milion lat temu? To co Hubble zaobserwował i to co wynikało z równań Ogólnej Teorii Względności (przed tym, gdy Einstein dodał do nich stało kosmologiczną), potwierdzało koncepcję jaką od początku forsował Georges Lemaitre. Wszechświat był kiedyś skupiony w jednym, nieskończenie gęstym punkcie. Lemaitre ten punkt nazwał pierwotnym atomem. W 1947 roku amerykański kosmolog pochodzenia rosyjskiego George Gamow opracował matematyczne podstawy koncepcji Lemaitra. Całość została ochrzczona Teorią Wielkiego Wybuchu (ang. Big Bang).

Obserwacje Hubble’a nie wszystkich jednak przekonały. Nie chodziło o to, że w nie nie uwierzono, ale uważano, że wyciągnięto z nich nieprawdziwe wnioski. W 1948 roku powstała Teoria Stanu Stacjonarnego. W największym skrócie mówi ona, że co prawda galaktyki się rozszerzają, ale w pustych przestrzeniach pomiędzy nimi cały czas powstaje materia.  W ten sposób próbowano pogodzić ogień i wodę. Wszystko się rozszerza, ale gęstość wszechświata pozostaje stała, bo nieustannie produkowana jest nowa materia. Jak to się dzieje i gdzie ona powstaje? To były pytania bez odpowiedzi.

Gamow przewiduje

To wtedy nastąpił symboliczny kres koncepcji stanu stacjonarnego. Pogrzeb wizji wszechświata niezmiennego, statycznego.

Promieniowanie reliktowe to echo Wielkiego Wybuchu i jedyny sposób by zajrzeć w historię tak odległą. Promieniowanie, które teraz potrafimy rejestrować to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu. Gdy skonstruowano odpowiednie anteny, w którąkolwiek ze stron je kierowano, zawsze rejestrowano podobny szum. Hałas radiowy nie ustawał. Tak było na powierzchni Ziemi. W 1989 roku w przestrzeń kosmiczną wysłano satelitę COBE (Cosmic Background Explorer). I potwierdziło się to co przewidywał Gamow. Wszechświat jest wypełniony promieniowaniem, poświatą Wielkiego Wybuchu. COBE zarejestrował coś jeszcze. Wspomniane promieniowanie nie jest jednorodne. Te niewielkie różnice odpowiadają strukturom, które formowały się we wczesnym wszechświecie.  Chłodniejsze rejony (na większości z map zaznaczane kolorem niebieskim) to miejsca gdzie materia w niemowlęcym okresie życia wszechświata skupiała się tworząc galaktyki. W połowie 2001 roku w przestrzeń została wystrzelona sonda WMAP. Następca COBE. Z większą dokładnością, potwierdziła to, co zmierzyła misja COBE.

 

Jak w ciągu 90 lat zmienił się wszechświat?

  • Rok 1917 – Albert Einstein do równań Ogólnej Teorii Względności wprowadza stałą kosmologiczną. „Dzięki” niej wszechświat staje się statyczny.
  • Rok 1923 – Edwin Hubble odkrył, że Droga Mleczna to zaledwie mały wycinek Wszechświata.
  • Rok 1927 – Belgijski ksiądz i matematyk Georges Lemaitre prezentuje Hipotezę Pierwotnego Atomu, która później została ( w założeniu złośliwie) ochrzczona jako Big Bang.
  • Rok 1931 – Edwin Hubble zaobserwował, że galaktyki oddalają się od Ziemi tym szybciej, im dalej się znajdują. Wszechświat jest jednak dynamiczny. Einstein wprowadzenie stałej kosmologicznej nazwał „największą pomyłką życia”.
  • Rok 1948 – George Gamow stwierdza, że jeżeli Wielki Wybuch rzeczywiście miał miejsce, kosmos musi być wypełniony tzw. mikrofalowym promieniowaniem tła.
  • Rok 1964 – zarejestrowanie mikrofalowego promieniowania tła, upadek konkurencyjnej do Wielkiego Wybuchu koncepcji wszechświata stacjonarnego.
  • Lata 70te XX wieku – dokładna analiza rotacji galaktyk budzi wątpliwości co do ilości materii w nich zawartych. Bez istnienia ciemnej materii, nie można wytłumaczyć budowy wszechświata. Dalsze prace potwierdzają, że ciemnej materii jest wielokrotnie więcej niż tej „zwykłej”, widzialnej.
  • Rok 1989 – wystrzelenie na orbitę okołoziemską pierwszego satelity zbudowanego wyłącznie do badań kosmologicznych. Zadaniem COBE (Cosmic Background Explorer) było wykonanie pomiarów kosmicznego promieniowania tła.
  • Rok 1990 – na orbitę okołoziemską wystrzelony zostaje teleskop Hubble’a – jedno z najważniejszych narzędzi współczesnej nauki służące do badania losów wszechświata.
  • Rok 2003 – Prezentacja obrazu mikrofalowego promieniowania tła całego wszechświata wykonanego przez satelitę WMAP (doskonalszego następcę misji COBE). – „ Ten obraz jest jednym z najważniejszych rezultatów naukowych w historii ludzkości” – powiedział rzecznik NASA.

A po więcej ciekawych informacji o Einsteinie odsyłam do nowego serialu National Geographic pt. „Geniusz”. Premiera 23 kwietnia o 21.30.

Brak komentarzy do Jak to się zaczęło?

Uważaj jak chodzisz

Ze sposobu w jaki się poruszamy, naukowcy potrafią wyciągnąć zadziwiającą ilość informacji. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala.

Ze sposobu w jaki się poruszamy, naukowcy potrafią wyciągnąć zadziwiającą ilość informacji. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala.

Amerykańska firma Visionics opracowała system który potrafi analizować twarze. Zainstalowany w centrum monitoringu miejskiego (czy lotniskowego) „wyławia” z tłumu przechodniów osoby które ma w swojej bazie danych. Rozpoznaje je po rozstawie oczu, kształcie ust czy wysokości czoła. Czy istnieje lepszy sposób na znalezienie osoby poszukiwanej ?

Chód świetlnych punkcików

Oprogramowanie Visionics, ale także aplikacje wielu innych firm zajmujących się szeroko rozumianym bezpieczeństwem, potrafi znacznie więcej. Automatycznie wykrywa osoby, po… sposobie chodzenia. Może np. z tłumu wyłowić osobę, która pod kurtką niesie coś ciężkiego. Jak to robi ? Za dogłębne przeanalizowanie chodu kobiet i mężczyzn zabrali się badacze z Southern Cross Univeristy w Coffs Harbour (w Australii). Wyniki ich badań opublikował tygodnik „New Scientist” oraz czasopismo „Current Biology” (vol 18, R728-R729). Czy kobiety i mężczyźni poruszają się inaczej ? To oczywiste, ale jak matematycznie opisać i zmierzyć te różnice ? Najpierw naukowcy sfilmowali chód 50 kobiet i 50 mężczyzn, a następnie, komputerowo każdy staw (biodrowy, barkowy, łokciowy,…) badanej osoby zaznaczyli jako świecący punkt. Z filmu przedstawiającego poruszającą się postać powstała animacja poruszających się punktów świetlnych, a równocześnie biblioteka chodów ludzkich. Zbiór sposobów w jakich poruszają się ludzie.

Okazało się, że nawet powierzchowna analiza pozwala wyłapać charakterystyczne cechy męskiego i żeńskiego chodu. To ważne, bo jeżeli problem da się opisać matematycznie, jest też nadzieja, że uda się go przełożyć na język rozumiany przez komputery. Po sposobie chodzenia można też określić wiek obserwowanego. Głębsza analiza pozwala powiedzieć w jakim jest nastroju i czy jest zmęczony, jakie ma wady postawy i czy dźwiga coś ciężkiego. Stosunkowo łatwo jest też określić czy obserwowany kuleje czy tylko udaje (to ważne wtedy gdy ktoś chciałby zmylić system monitoringu). Te wszystkie informacje są niezwykle ważne dla służb, która zajmują się bezpieczeństwem, ale mogą być też wykorzystywane przez psychologów.

Odchodzi czy przychodzi

Szef grupy badaczy Rick van der Zwan chód najbardziej kobiecy porównał do poruszania się koni w czasie parady. Zauważył, że panie podnoszą wysoko kolana a stopy stawiają jedna za drugą w tej samej linii. Jak zatem wygląda chód typowo męski ? Wg autorów badań można go porównać do toczenia się.

Przy okazji badań badacze zauważyli bardzo ciekawą prawidłowość. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala. Dlaczego tak się dzieje ? Trudno powiedzieć, ale autorzy spekulują, że odpowiedzi należy szukać w ewolucji. – Gdy zauważymy mężczyznę i nie mamy pewności czy się do nas zbliża czy oddala, lepiej założyć to pierwsze – powiedział Zwan. Dlaczego ? Bo naszym dalekim przodkom bezpieczniej było w takiej sytuacji przygotować się do ucieczki albo konfrontacji niż później żałować. Dlaczego w takim razie chód kobiecy kojarzy nam się z oddalającą postacią ? Choć to znowu przypuszczenie, autorzy także w tym przypadku wskazują na ewolucję. „Kiedy jest się małym dzieckiem i nie do końca jest się pewnym czy mama stoi przodem do nas czy odchodzi, prawdopodobnie bezpieczniej jest założyć, że jednak odchodzi, aby być gotowym do pójścia za nią” – tłumaczy van der Zwan.

Kto zwraca uwagę na chód ? Modelki, aktorzy,… Okazuje się, że nawet ze stawiania nogi za nogą specjaliści potrafią wyciągnąć zaskakujące wnioski. Wnioski dotyczące nas dzisiaj i nas przed wieloma wiekami.

Tomasz Rożek

Brak komentarzy do Uważaj jak chodzisz

Type on the field below and hit Enter/Return to search